基于人工智能的深潜耐压球壳应力场映射  

Stress Field Mapping Algorithm of Deep-sea Pressurized Spherical Shell Based on Artificial Intelligence

在线阅读下载全文

作  者:姚骥 汪雪良[1,2] 叶聪 顾学康[1,2] 孙梦丹 蒋镇涛[1,2] YAO Ji;WANG Xue-liang;YE Cong;GU Xue-kang;SUN Meng-dan;JIANG Zhen-tao(China Ship Scientific Research Center,Jiangsu Wuxi,214082,China;Taihu Laboratory of Deep Sea Technology and Science,Jiangsu Wuxi 214082,China)

机构地区:[1]中国船舶科学研究中心,江苏无锡214082 [2]深海技术科学太湖实验室,江苏无锡214082

出  处:《装备环境工程》2023年第9期169-177,共9页Equipment Environmental Engineering

基  金:国家重点研发计划(2021YFC2802300);江苏省卓越博士后计划(2023ZB629)。

摘  要:目的针对深潜耐压球壳在真实下潜过程中全局应力场难以直接获取的问题,提出一种基于人工智能的深潜耐压球壳应力场映射算法。方法构建深潜耐压球壳有限元模型,并开展仿真分析。提出深潜耐压球壳监测布点方案,进而利用长短时记忆神经网络(Long-short Term Memory Network,LSTM),将测点应力信息作为输入,将全局应力场信息作为输出,构建深潜耐压球壳应力场映射模型。最后,对不同测点下的映射结果进行分析。结果与模型试验结果相比,仿真误差小于2%。与DNN模型及BP模型相比,映射误差分别下降94.92%与97.76%。结论所提映射算法可在部分测点失效的情况下仍可以保持较高精度。Aiming at the problem of difficulty in directly obtaining the global stress field of the deep-sea pressurized spherical shell during the actual diving process,the work aims to propose a stress field mapping algorithm for deep-sea pressurized spherical shells based on artificial intelligence.Firstly,a finite element model of the deep-sea pressurized spherical shell was constructed and simulated.The simulation error was less than 2% compared with the model test results.Secondly,a monitoring point layout plan was proposed.Furthermore,the Long-short Term Memory Network(LSTM) was used to construct the stress field mapping model for deep-sea pressurized spherical shells with motoring point stress information as input and global stress field information as output.Compared with the DNN model and BP model,the mapping error decreases by 94.92% and 97.76%,respectively.Finally,the mapping results under different monitoring points are analyzed,and the results show that the mapping algorithm proposed can still maintain high accuracy in the case of partial monitoring point failure.

关 键 词:深潜耐压球壳 有限元模型 应力场映射 监测布点方案 LSTM 部分测点失效 

分 类 号:P751[交通运输工程—港口、海岸及近海工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象