Fundamental Trackability Problems for Iterative Learning Control  

在线阅读下载全文

作  者:Deyuan Meng Jingyao Zhang 

机构地区:[1]Seventh Research Division,Beihang University(BUAA),Beijing 100191,China [2]School of Automation Science and Electrical Engineering,Beihang University(BUAA),Beijing 100191,China

出  处:《IEEE/CAA Journal of Automatica Sinica》2023年第10期1933-1950,共18页自动化学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China (62273018);in part by the Science and Technology on Space Intelligent Control Laboratory (HTKJ2022KL502006)。

摘  要:Generally, the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental problem of ILC: whether the specified trajectory is trackable, or equivalently, whether there exist some inputs for the repetitive systems under consideration to generate the specified trajectory? The current paper contributes to dealing with this problem. Not only is a concept of trackability introduced formally for any specified trajectory in ILC, but also some related trackability criteria are established. Further, the relation between the trackability and the perfect tracking tasks for ILC is bridged, based on which a new convergence analysis approach is developed for ILC by leveraging properties of a functional Cauchy sequence(FCS). Simulation examples are given to verify the effectiveness of the presented trackability criteria and FCS-induced convergence analysis method for ILC.

关 键 词:CONVERGENCE functional Cauchy sequence(FCS) iterative learning control(ILC) trackability 

分 类 号:TP13[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象