Double spatial confinement on ruthenium nanoparticles inside carbon frameworks as durable catalysts for a quasi-solid-state Li–O_(2) battery  被引量:2

在线阅读下载全文

作  者:Meiling Wang Ying Yao Feiyang Yang Zhenwu Tang Jingjie Ren Cunzhong Zhang Feng Wu Xiangke Wang 

机构地区:[1]Beijing Key Laboratory of Environmental Science and Engineering,School of Materials Science&Engineering,Beijing Institute of Technology,Beijing,China [2]Beijing Institute of Technology Chongqing Innovation Center,Chongqing,China [3]College of Life and Environmental Sciences,Minzu University of China,Beijing,China [4]College of Environmental Science and Engineering,North China Electric Power University,Beijing,China

出  处:《Carbon Energy》2023年第8期114-125,共12页碳能源(英文)

基  金:National Natural Science Foundation of China,Grant/Award Number:22179005;National Key Research and Development Program of China,Grant/Award Number:2018YFC1900102。

摘  要:The rational design of large-area exposure,nonagglomeration,and longrange dispersion of metal nanoparticles(NPs)in the catalysts is critical for the development of energy storage and conversion systems.Little attention has been focused on modulating and developing catalyst interface contact engineering between a carbon substrate and dispersed metal.Here,a highly dispersed ultrafine ruthenium(Ru)NP strategy by double spatial confinement is proposed,that is,incorporating directed growth of metal–organic framework crystals into a bacterial cellulose templating substrate to integrate their respective merits as an excellent electrocatalytic cathode catalyst for a quasi-solid-state Li–O_(2) battery.The porous carbon matrix with highly dispersed ultrafine Ru NPs is well designed and used as cathode catalysts in a Li–O_(2) battery,demonstrating a high discharge areal capacity of 6.82 mAh cm^(–2) at 0.02 mA cm^(–2),a high-rate capability of 4.93 mAh cm^(–2) at 0.2 mA cm^(–2),and stable discharge/charge cycling for up to 500 cycles(2000 h)with low overpotentials of~1.4 V.This fundamental understanding of the structure–performance relationship demonstrates a new and promising approach to optimize highly efficient cathode catalysts for solid-state Li–O_(2) batteries.

关 键 词:bacterial cellulose cathode materials metal-organic frameworks Ru nanoparticles solid-state Li-O_(2)batteries 

分 类 号:O643.36[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象