Blind Image Quality Assessment by Pairwise Ranking Image Series  被引量:1

在线阅读下载全文

作  者:Li Xu Xiuhua Jiang 

机构地区:[1]School of Information and Telecommunication Engineering,Communication University of China,Beijing 100024,China [2]Peng Cheng Laboratory,Shenzhen 100876,China

出  处:《China Communications》2023年第9期127-143,共17页中国通信(英文版)

基  金:supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China, "Research of Visual Perception for Impairments of Color Information in High-Definition Images" (No.20110018110001)

摘  要:Image quality assessment(IQA)is constantly innovating,but there are still three types of stickers that have not been resolved:the“content sticker”-limitation of training set,the“annotation sticker”-subjective instability in opinion scores and the“distortion sticker”-disordered distortion settings.In this paper,a No-Reference Image Quality Assessment(NR IQA)approach is proposed to deal with the problems.For“content sticker”,we introduce the idea of pairwise comparison and generate a largescale ranking set to pre-train the network;For“annotation sticker”,the absolute noise-containing subjective scores are transformed into ranking comparison results,and we design an indirect unsupervised regression based on EigenValue Decomposition(EVD);For“distortion sticker”,we propose a perception-based distortion classification method,which makes the distortion types clear and refined.Experiments have proved that our NR IQA approach Experiments show that the algorithm performs well and has good generalization ability.Furthermore,the proposed perception based distortion classification method would be able to provide insights on how the visual related studies may be developed and to broaden our understanding of human visual system.

关 键 词:no reference image quality assessment distortion classification method pairwise preference network EVD-based unsupervised regression 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象