Downlink Resource Allocation for NOMA-Based Hybrid Spectrum Access in Cognitive Network  被引量:3

在线阅读下载全文

作  者:Yong Zhang Zhenjie Cheng Da Guo Siyu Yuan Tengteng Ma Zhenyu Zhang 

机构地区:[1]School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China [2]Beijing Key Laboratory of Work Safety Intelligent Monitoring(Beijing University of Posts and Telecommunications),Beijing 100876,China

出  处:《China Communications》2023年第9期171-184,共14页中国通信(英文版)

基  金:the National Natural Science Foundation of China(Grant No.61971057).

摘  要:To solve the contradiction between limited spectrum resources and increasing communication demand,this paper proposes a wireless resource allocation scheme based on the Deep Q Network(DQN)to allocate radio resources in a downlink multi-user cognitive radio(CR)network with slicing.Secondary users(SUs)are multiplexed using non-orthogonal multiple access(NOMA).The SUs use the hybrid spectrum access mode to improve the spectral efficiency(SE).Considering the demand for multiple services,the enhanced mobile broadband(eMBB)slice and ultrareliable low-latency communication(URLLC)slice were established.The proposed scheme can maximize the SE while ensuring Quality of Service(QoS)for the users.This study established a mapping relationship between resource allocation and the DQN algorithm in the CR-NOMA network.According to the signal-to-interference-plusnoise ratio(SINR)of the primary users(PUs),the proposed scheme can output the optimal channel selection and power allocation.The simulation results reveal that the proposed scheme can converge faster and obtain higher rewards compared with the Q-Learning scheme.Additionally,the proposed scheme has better SE than both the overlay and underlay only modes.

关 键 词:cognitive network network slicing non-orthogonal multiple access hybrid spectrum access resource allocation deep reinforcement learning 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象