Underwater Noise Target Recognition Based on Sparse Adversarial Co-Training Model with Vertical Line Array  

在线阅读下载全文

作  者:ZHOU Xingyue YANG Kunde YAN Yonghong LI Zipeng DUAN Shunli 

机构地区:[1]Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China [2]Key Laboratory of Ocean Acoustics and Sensing Ministry of Industry and Information Technology,School of Marine Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China

出  处:《Journal of Ocean University of China》2023年第5期1201-1215,共15页中国海洋大学学报(英文版)

基  金:the National Natural Science Foundation of China(No.6210011631);in part by the China Postdoctoral Science Foundation(No.2021M692628)。

摘  要:The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.

关 键 词:underwater acoustic target recognition marine acoustic signal processing sound field feature extraction sparse adversarial network 

分 类 号:P733.2[天文地球—物理海洋学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象