检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHOU Xingyue YANG Kunde YAN Yonghong LI Zipeng DUAN Shunli
机构地区:[1]Key Laboratory of Speech Acoustics and Content Understanding,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China [2]Key Laboratory of Ocean Acoustics and Sensing Ministry of Industry and Information Technology,School of Marine Science and Technology,Northwestern Polytechnical University,Xi’an 710072,China
出 处:《Journal of Ocean University of China》2023年第5期1201-1215,共15页中国海洋大学学报(英文版)
基 金:the National Natural Science Foundation of China(No.6210011631);in part by the China Postdoctoral Science Foundation(No.2021M692628)。
摘 要:The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion.
关 键 词:underwater acoustic target recognition marine acoustic signal processing sound field feature extraction sparse adversarial network
分 类 号:P733.2[天文地球—物理海洋学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7