Greedy nonlinear autoregression for multifidelity computer models at different scales  

在线阅读下载全文

作  者:W.Xing M.Razi R.M.Kirby K.Sun A.A.Shah 

机构地区:[1]School of Energy and Power Engineering,Chongqing University,174 Shazhengjie,Shapingba,Chongqing 400044,China [2]Scientific Computing and Imaging Institute,University of Utah,72 S Central Campus Drive,Room 3750 Salt Lake City,UT 84112,United States

出  处:《Energy and AI》2020年第1期117-130,共14页能源与人工智能(英文)

基  金:This work has been supported by DARPA TRADES Award HR0011-17-2-0016.

摘  要:Although the popular multi-fidelity surrogate models,stochastic collocation and nonlinear autoregression have been applied successfully to multiple benchmark problems in different areas of science and engineering,they have certain limitations.We propose a uniform Bayesian framework that connects these two methods allowing us to combine the strengths of both.To this end,we introduce Greedy-NAR,a nonlinear Bayesian autoregressive model that can handle complex between-fidelity correlations and involves a sequential construction that allows for significant improvements in performance given a limited computational budget.The proposed enhanced nonlinear autoregressive method is applied to three benchmark problems that are typical of energy applications,namely molecular dynamics and computational fluid dynamics.The results indicate an increase in both prediction stability and accuracy when compared to those of the standard multi-fidelity autoregression implementations.The results also reveal the advantages over the stochastic collocation approach in terms of accuracy and computational cost.Generally speaking,the proposed enhancement provides a straightforward and easily implemented approach for boosting the accuracy and efficiency of concatenated structure multi-fidelity simulation methods,e.g.,the nonlinear autoregressive model,with a negligible additional computational cost.

关 键 词:Multi-fidelity models Autoregressive Gaussian processes Deep Gaussian processes Surrogate models Molecular dynamics Computational fluid dynamics 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象