检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jingyi Qin Zhibin Wang Ying Chen Songping Mo Jian Liu
机构地区:[1]School of Material and Energy,Guangdong University of Technology,Guangzhou,China [2]Guangdong Provincial Key Laboratory of Functional Soft Matter,Guangzhou,China [3]School of Petrochemical Technology,Lanzhou University of Technology,Lanzhou,China
出 处:《Droplet》2023年第3期48-59,共12页液滴(英文)
基 金:National Natural Science Foundation of China,Grant/Award Numbers:U20A201020,52166005,51806038。
摘 要:The use of double emulsions(DEs),which represent colloidal structures composed of droplets nested within droplets,can provide for unparallel droplet manipulation in droplet-based microfluidic technology due to their unique core–shell structures.The controlled release of cores in DEs is of particular interest.However,this process remains poorly explored.In this work,the thermocapillary flow induced by a temperature gradient is used as a driving force to control the core release and the impacts of different linear temperature gradients,core diameters,shell diameter,and core/shell diameter ratios on the thermocapillary flow and core release characteristics of DE droplets consisting of a water-in-n-hexadecane-in-water system within a cylindrical microchannel are investigated.Most of the core and shell diameter conditions considered result in a double-core release process,where the inner droplet volume is partially ejected before the remaining core is rewrapped by the outer droplet,and the remaining inner droplet volume is ejected later during a second core release event.However,relatively small core diameters of 50 and 75μm produce conditions where the full inner droplet volume is ejected during a singlecore release process.In addition,we provide empirical relationships for accurately determining the time at which core release initially occurs under given DE parameters as well as for precisely determining whether the applied conditions will lead to single-or double-core release processes.Therefore,the results of this study provide insights enabling the development of accurate inner droplet release technologies under thermocapillary migration.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7