检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙炜 刘恒 陶建峰 孙浩 刘成良[1] SUN Wei;LIU Heng;TAO Jian-feng;SUN Hao;LIU Cheng-liang(State Key Laboratory of Mechanical System and Vibration,Shanghai Jiao Tong University,Shanghai 200240,China)
机构地区:[1]上海交通大学机械系统与振动国家重点实验室,上海200240
出 处:《浙江大学学报(工学版)》2023年第10期2028-2041,共14页Journal of Zhejiang University:Engineering Science
基 金:国家重点研发计划资助项目(2020YFB2009703);教育部-中国移动联合基金资助建设项目(MCM20180703).
摘 要:为了解决负载口独立控制阀控液压缸系统故障信息相似表征下的故障元件识别难题,提出基于独立循环神经网络(IndRNN)和一维大核卷积神经网络(1DLCNN)结合的故障诊断方法.构建负载口独立控制阀控液压缸系统,针对系统提出压力与位移信号的状态感知方案,分析了系统故障的信号特征.设计一种基于IndRNN-1DLCNN的深度神经网络模型,模型引入残差结构进行多层IndRNN设计并引入1DLCNN增强全局信息捕捉能力,实现多源信号的融合,识别发生故障的具体元件.结果表明在不同的负载工况下,利用提出的方法均能够准确地将系统故障定位至4个先导阀、2个主阀、1组位移传感器以及1个液压缸共8类具体元件,系统的整体诊断准确率最高达到96%,单一元件的故障识别准确率均大于93%.A fault diagnosis method was proposed to address the problem of fault components identification under similar fault information representations in an independent metering valve-controlled hydraulic cylinder system.An independently recurrent neural network(IndRNN)and a one-dimensional large-kernel convolution neural network(1DLCNN)was combined in the method.An independent metering valve-controlled hydraulic cylinder system was constructed.A state-sensing scheme was presented for capturing pressure and displacement signals.The signal characteristics under different fault conditions were analyzed.A deep neural network model utilizing IndRNN-1DLCNN was established.The deep network architecture of multi-layer IndRNN with a residual structure was adopted.The 1DLCNN was developed to enhance the global information capture capability.The model structure facilitated multi-sensor information fusion and specific fault component identification.Results showed that the proposed method could accurately distinguish eight specific fault components,including four pilot valves,two main valves,displacement sensors and a hydraulic cylinder in the case of different working conditions.The overall diagnostic accuracy of the system could reach up to 96%for the discussed working conditions.The fault identification accuracy of one component was above 93%under the working condition.
关 键 词:负载口独立控制 阀控液压缸系统 独立循环神经网络 一维大核卷积神经网络 故障诊断
分 类 号:TH137[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7