检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨锦溪 姚志鹏 郑俊波[1] 王洪亮[1] Yang Jinxi;Yao Zhipeng;Zheng Junbo;Wang Hongliang(Department of Critical Care Medicine,the Second Affiliated Hospital of Harbin Medical University,Harbin 150086,China)
机构地区:[1]哈尔滨医科大学附属第二医院重症医学科,黑龙江哈尔滨150086
出 处:《中国急救医学》2023年第10期832-836,共5页Chinese Journal of Critical Care Medicine
基 金:国家重点研发计划项目(2021YFC2501800)。
摘 要:急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)缺乏特异性诊断标准,且诱因复杂,在临床实践中往往难以做到早期识别、及时干预,这就需要一种精确、高效的手段辅助识别其发生。基于大数据的机器学习作为一种可以处理海量数据、高效利用有效知识的学习方法,在众多领域发挥了不同作用,在医学领域的重要性日益凸显。截至目前,在医学领域已有大量的机器学习成功应用的案例,其中监督学习算法凭借其可以预测风险的优势,获得众多研究者青睐。本文旨在阐述机器学习算法中监督学习算法在预测危险因素诱导下ARDS发生风险的临床应用。Acute respiratory distress syndrome(ARDS)lacks specific diagnostic criteria and possesses complex triggers,which makes it difficult to achieve early identification and timely intervention in clinical practice.We need an accurate and efficient means to assist in identifying its occurrence.Machine learning based on big data as a learning method can process massive amounts of data and efficiently utilize effective knowledge,has played a different role in many fields and is increasingly important in the medical field.Up to now,there have been a large number of successful applications of machine learning in the medical field.Among them,supervised learning algorithm has gained the favor of many researchers by its advantages of predicting risks.This paper aims to illustrate the clinical application of supervised learning algorithm in predicting the ARDS induced by risk factors.
关 键 词:急性呼吸窘迫综合征(ARDS) 机器学习 监督学习 预测模型 脓毒症 急性胰腺炎 创伤性颅脑损伤 新型冠状病毒感染
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28