检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhiguo Yong Hongmei Kang Falai Chen
机构地区:[1]School of Mathematical Sciences,Soochow University,Suzhou,215006,China [2]School of Mathematical Sciences,University of Science and Technology of China,Hefei,230026,China
出 处:《Computer Modeling in Engineering & Sciences》2024年第1期739-760,共22页工程与科学中的计算机建模(英文)
基 金:The work was supported by the NSF of China(No.11801393);the Natural Science Foundation of Jiangsu Province,China(No.BK20180831).
摘 要:PHT-splines are defined as polynomial splines over hierarchical T-meshes with very efficient local refinement properties.The original PHT-spline basis functions constructed by the truncation mechanism have a decay phenomenon,resulting in numerical instability.The non-decay basis functions are constructed as the B-splines that are defined on the 2×2 tensor product meshes associated with basis vertices in Kang et al.,but at the cost of losing the partition of unity.In the field of finite element analysis and topology optimization,forming the partition of unity is the default ingredient for constructing basis functions of approximate spaces.In this paper,we will show that the non-decay PHT-spline basis functions proposed by Kang et al.can be appropriately modified to form a partition of unity.Each non-decay basis function is multiplied by a positive weight to form the weighted basis.The weights are solved such that the sum of weighted bases is equal to 1 on the domain.We provide two methods for calculatingweights,based on geometric information of basis functions and the subdivision of PHT-splines.Weights are given in the form of explicit formulas and can be efficiently calculated.We also prove that the weights on the admissible hierarchical T-meshes are positive.
关 键 词:PHT-splines partition of unity weighted bases PHT-splines SUBDIVISION
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.54.80