检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dehai Zhang Yu Ma Qing Liu Haoxing Wang Anquan Ren Jiashu Liang
机构地区:[1]School of Software,Yunnan University,Kunming,650091,China
出 处:《Computers, Materials & Continua》2023年第9期2901-2920,共20页计算机、材料和连续体(英文)
基 金:funded by(i)Natural Science Foundation China(NSFC)under Grant Nos.61402397,61263043,61562093 and 61663046;(ii)Open Foundation of Key Laboratory in Software Engineering of Yunnan Province:No.2020SE304.(iii)Practical Innovation Project of Yunnan University,Project Nos.2021z34,2021y128 and 2021y129.
摘 要:Traffic scene captioning technology automatically generates one or more sentences to describe the content of traffic scenes by analyzing the content of the input traffic scene images,ensuring road safety while providing an important decision-making function for sustainable transportation.In order to provide a comprehensive and reasonable description of complex traffic scenes,a traffic scene semantic captioningmodel withmulti-stage feature enhancement is proposed in this paper.In general,the model follows an encoder-decoder structure.First,multilevel granularity visual features are used for feature enhancement during the encoding process,which enables the model to learn more detailed content in the traffic scene image.Second,the scene knowledge graph is applied to the decoding process,and the semantic features provided by the scene knowledge graph are used to enhance the features learned by the decoder again,so that themodel can learn the attributes of objects in the traffic scene and the relationships between objects to generate more reasonable captions.This paper reports extensive experiments on the challenging MS-COCO dataset,evaluated by five standard automatic evaluation metrics,and the results show that the proposed model has improved significantly in all metrics compared with the state-of-the-art methods,especially achieving a score of 129.0 on the CIDEr-D evaluation metric,which also indicates that the proposed model can effectively provide a more reasonable and comprehensive description of the traffic scene.
关 键 词:Traffic scene captioning sustainable transportation feature enhancement encoder-decoder structure multi-level granularity scene knowledge graph
分 类 号:TN91[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.215.60