检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU XiangLei WEI PeiDong LUO QingYang XU Qiao WANG JianGuo LV ShuShan TIAN Yang YAO HaiChen XUAN YiMin
机构地区:[1]School of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China [2]Integrated Energy Institute,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
出 处:《Science China(Technological Sciences)》2023年第9期2625-2636,共12页中国科学(技术科学英文版)
基 金:supported by the National Key R&D Program of China(Grant No.2018YFA0702300);the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20220009,BK20202008,BE2022024,BK20220001,BE2022602,and BK20220077)。
摘 要:Latent heat thermal energy storage(LHTES) technology is gaining extensive attention due to its capability to balance supply and demand mismatch in solar energy utilization. However, phase change material as the core of storing latent heat still suffers from low thermal conductivity and poor shape stability, which severely restricts its practical application. Here, an eco-friendly strategy for achieving high-performance dual functional thermal and solar energy storage is proposed via turning wood processing waste into high-value hierarchical porous SiC ceramic-based composite phase change materials. The porosity of prepared porous SiC skeletons is highly adjustable from 59.4% to 90.2%, overcoming low porosity limitations of traditional wood materials and enabling tunable energy storage density for various applications. High thermal conductivity is achieved by benefiting from large grains and continuous skeletons with a value up to 37.93 and 1.87 W/(m K) for porosity of 59.4% and 90.2%, respectively.Excellent stabilities are demonstrated with only slight decreases of thermal conductivity and energy storage density over 1000 cycles and good anti-leakage properties are confirmed due to capillary adsorption forces induced by hierarchical pores. Benefiting from high thermal conductivity and high solar absorptance, fast and efficient solar thermal energy storage is successfully demonstrated. This work provides a new strategy for the high-value utilization of wood processing waste and efficient thermal/solar energy storage.
关 键 词:sawdust waste silicon carbide ceramics phase change materials thermal energy storage solar energy
分 类 号:TB34[一般工业技术—材料科学与工程] TK11[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222