Rankin-Selberg convolutions for GL(n)×GL(n)and GL(n)×GL(n-1)for principal series representations  

在线阅读下载全文

作  者:Jian-Shu Li Dongwen Liu Feng Su Binyong Sun 

机构地区:[1]Institute for Advanced Study in Mathematics,Zhejiang University,Hangzhou 310058,China [2]School of Mathematical Sciences,Zhejiang University,Hangzhou 310058,China [3]Department of Pure Mathematics,Xi’an Jiaotong-Liverpool University,Suzhou 215123,China

出  处:《Science China Mathematics》2023年第10期2203-2218,共16页中国科学:数学(英文版)

基  金:supported by the Natural Science Foundation of Zhejiang Province(Grant No.LZ22A010006);National Natural Science Foundation of China(Grant No.12171421);Feng Su was supported by National Natural Science Foundation of China(Grant No.11901466);the Qinglan Project of Jiangsu Province;supported by the National Key Research and Development Program of China(Grant No.2020YFA0712600).

摘  要:Let k be a local field.Let I_(v) and I_(v′)be smooth principal series representations of GLn(k)and GL_(n-1)(k),respectively.The Rankin-Selberg integrals yield a continuous bilinear map I_(v)×I_(v′)→C with a certain invariance property.We study integrals over a certain open orbit that also yield a continuous bilinear map I_(v)×I_(v′)→C with the same invariance property and show that these integrals equal the Rankin-Selberg integrals up to an explicit constant.Similar results are also obtained for Rankin-Selberg integrals for GLn(k)×GLn(k).

关 键 词:principal series representation Rankin-Selberg convolution L-FUNCTION 

分 类 号:O173[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象