Global exponential p-norm stability of BAM neural networks with unbounded time-varying delays:A method based on the representation of solutions  

在线阅读下载全文

作  者:Xi Chen Tingting Yu Xian Zhang 

机构地区:[1]School of Mathematical Science Heilongjiang University,No.74 Xuefu Road Harbin 150080,P.R.China [2]Heilongjiang Provincial Key Laboratory of the Theory and Computation of Compler Systems Heilongjiang University,No.74 Xuefu Road Harbin 150080,P.R.China

出  处:《International Journal of Biomathematics》2023年第5期71-86,共16页生物数学学报(英文版)

基  金:supported in part by the Natural Science Foundation of Heilongjiang Province (No.YQ2021F014);the Fundamental Research Funds for the provincial universities of Heilongjiang Province (No.2020-KYYWF-1040)。

摘  要:This paper studies the global exponential p-norm stability of bidirectional associative memory(BAM)neural networks with unbounded time-varying delays.A novel method based on the representation of solutions is put forward to deduce a global exponential p-norm stability criterion.This method does not need to set up any Lyapunov-Krasovskii functionals(LKF),which can greatly reduce a large amount of computations and is simpler than the existing methods.In the end,representative numerical examples are given to llustrate the availability of the method.

关 键 词:BAM neural networks global exponential p-norm stability unbounded timevarying delays representation of solutions 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象