检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Anuraj Singh Vijay Shankar Sharma
机构地区:[1]ABV-Indian Institute of Information Technology and Management Gwalior,Madhya Pradesh,India
出 处:《International Journal of Biomathematics》2023年第5期165-191,共27页生物数学学报(英文版)
基 金:supported by Science Engineering Research Board,Government of India (CRG/2021/006380).
摘 要:This work investigates the bifurcation analysis in a discrete-time Leslie-Gower predatorprey model with constant yield predator harvesting.The stability analysis for the fixed points of the discretized model is shown briefy.In this study,the model undergoes codimension-1 bifurcation such as fold bifurcation(limit point),flip bifurcation(perioddoubling)and Neimark-Sacker bifurcation at a positive fixed point.Further,the model exhibits codimension-2 bifurcations,including Bogdanov-Takens bifurcation and generalized fip bifurcation at the fixed point.For each bifurcation,by using the critical normal form coefficient method,various critical states are calculated.To validate our analytical findings,the bifurcation curves of fixed points are drawn by using MATCONTM.The system exhibits interesting rich dynamics including limit cycles and chaos.Moreover,it has been shown that the predator harvesting may control the chaos in the system.
关 键 词:Flip bifurcation Neimark-Sacker bifurcation generalized fip bifurcation Bogdanov-Takens bifurcation HARVESTING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145