Bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals  

在线阅读下载全文

作  者:Z.Eskandari R.Khoshsiar Ghaziani Z.Avazzadeh 

机构地区:[1]Department of Mathematics,Faculty of Science Fasa University,Fasa,Iran [2]Department of Mathematical Sciences Shahrekord University,Shahrekord,Iran [3]Department of Mathematical Sciences University of South Africa,Florida,South Africa

出  处:《International Journal of Biomathematics》2023年第6期289-312,共24页生物数学学报(英文版)

摘  要:This study focuses on the stability and local bifurcations of a discrete-time SIR epidemic model with logistic growth of the susceptible individuals analytically,and numerically.The analytical results are obtained using thenormal form technique and numerical results are obtained using the numerical continuation method.For this model,a number of bifurcations are studied,including the transcritical(pitchfork)and fip bifurcations,the Neimark-Sacker(NS)bifurcations,and the strong resonance bifurcations.We especially determine the dynamical behaviors of the model for higher iterations up to fourth-order.Numerical simulation is employed to present a closed invariant curve emerging about an NS point,and its breaking down to several closed invariant curves and eventuality giving rise to a chaotic strange attractor by increasing the bifurcation parameter.

关 键 词:SIR epidemic model stability bifurcation critical normal form coefficient numerical continuation method 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象