Complex dynamics and bifurcation analysis for a Beverton-Holt population model with Allee effect  

在线阅读下载全文

作  者:Karima Mokni Mohamed Ch-Chaoui 

机构地区:[1]MRI Laboratory,FacultéPolydisciplinaire Khouribga Sultan Moulay Slimane University BP:145 Khouribga Principale,25000,Kingdom of Morocco

出  处:《International Journal of Biomathematics》2023年第7期165-196,共32页生物数学学报(英文版)

摘  要:In this paper,we have derived a discrete evolutionary Beverton-Holt population model.The model is built using evolutionary game theory methodology and takes into consideration the strong Allee effect related to predation saturation.We have discussed the existence of the positive fixed point and examined its asymptotic stability.Analytically,we demonstrated that the derived model exhibits Neimark-Sacker bifurcation when the maximal predator intensity is at lower values.All chaotic behaviors are justified numerically.Finally,to avoid these chaotic features and achieve asymptotic stability,we implement two chaos control methods.

关 键 词:Evolutionary game theory asymptotic stability Neimark-Sacker bifurcation chaos control 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象