检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xuexia Lan Xingyu Xiong Jie Cui Renzong Hu
机构地区:[1]School of Materials Science and Engineering,Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials,South China University of Technology,Guangzhou 510640,Guangdong,China [2]Analytical and Testing Center,South China University of Technology,Guangzhou 510640,Guangdong,China
出 处:《Journal of Energy Chemistry》2023年第8期433-444,I0011,共13页能源化学(英文版)
基 金:financially supported by the National Natural Science Foundation of China (Nos. 52071144, 52231009,51831009, 51901043);the Guangdong Basic and Applied Basic Research Foundation (No. 2023B1515040011);the Guangzhou Key Research and Development Program (No. 202103040001);the TCL Science and Technology Innovation Fund (No.20222055)。
摘 要:In the past two decades,a lot of high-capacity conversion-type metal oxides have been intensively studied as alternative anode materials for Li-ion batteries with higher energy density.Unfortunately,their large voltage hysteresis(0.8-1.2 V) within reversed conversion reactions results in huge round-trip inefficiencies and thus lower energy efficiency(50%-75%) in full cells than those with graphite anodes.This remains a long-term open question and has been the most serious drawback toward application of metal oxide anodes.Here we clarify the origins of voltage hysteresis in the typical SnO2anode and propose a universal strategy to minimize it.With the established in situ phosphating to generate metal phosphates during reversed conversion reactions in synergy with boosted reaction kinetics by the added P and Mo,the huge voltage hysteresis of 0.9 V in SnO_(2),SnO_(2)-Mo,and 0.6 V in SnO2-P anodes is minimized to 0.3 V in a ternary SnO_(2)-Mo-P(SOMP) composite,along with stable high capacity of 936 mA h g^(-1)after 800 cycles.The small voltage hysteresis can remain stable even the SOMP anode operated at high current rate of10 A g^(-1)and wide-range temperatures from 60 to 30℃,resulting in a high energy efficiency of88.5% in full cells.This effective strategy to minimize voltage hysteresis has also been demonstrated in Fe2O3,Co3O4-basded conversion-type anodes.This work provides important guidance to advance the high-capacity metal oxide anodes from laboratory to industrialization.
关 键 词:Conversion reaction Voltage hysteresis Energy efficiency PHOSPHATING
分 类 号:TM912[电气工程—电力电子与电力传动] TB332[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3