检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Changheng Zhao Dan Wang Jun Teng Cheng Yang Xinyi Zhang Xianming Wei Qin Zhang
出 处:《Journal of Animal Science and Biotechnology》2023年第5期1941-1953,共13页畜牧与生物技术杂志(英文版)
基 金:funded by National Key Research and Development Program of China(2021YFD1200404);the Yangzhou University Interdisciplinary Research Foundation for Animal Science Discipline of Targeted Support(yzuxk202016);the Project of Genetic Improvement for Agricultural Species(Dairy Cattle)of Shandong Province(2019LZGC011).
摘 要:Background Breed identification is useful in a variety of biological contexts.Breed identification usually involves two stages,i.e.,detection of breed-informative SNPs and breed assignment.For both stages,there are several methods proposed.However,what is the optimal combination of these methods remain unclear.In this study,using the whole genome sequence data available for 13 cattle breeds from Run 8 of the 1,000 Bull Genomes Project,we compared the combinations of three methods(Delta,FST,and In)for breed-informative SNP detection and five machine learning methods(KNN,SVM,RF,NB,and ANN)for breed assignment with respect to different reference population sizes and difference numbers of most breed-informative SNPs.In addition,we evaluated the accuracy of breed identification using SNP chip data of different densities.Results We found that all combinations performed quite well with identification accuracies over 95%in all scenarios.However,there was no combination which performed the best and robust across all scenarios.We proposed to inte-grate the three breed-informative detection methods,named DFI,and integrate the three machine learning methods,KNN,SVM,and RF,named KSR.We found that the combination of these two integrated methods outperformed the other combinations with accuracies over 99%in most cases and was very robust in all scenarios.The accuracies from using SNP chip data were only slightly lower than that from using sequence data in most cases.Conclusions The current study showed that the combination of DFI and KSR was the optimal strategy.Using sequence data resulted in higher accuracies than using chip data in most cases.However,the differences were gener-ally small.In view of the cost of genotyping,using chip data is also a good option for breed identification.
关 键 词:Breed identification Breed-informative SNPs Genomic breed composition Machine learning Whole genome sequence data
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90