基于GTM逆向映射和SD建模的潜在技术机会识别与评价  被引量:2

Identification and Evaluation of Potential Technical Opportunities Based on GTM Reverse Mapping and SD Modeling

在线阅读下载全文

作  者:周钟 班燚 Zhou Zhong

机构地区:[1]上海应用技术大学经济与管理学院,上海201418

出  处:《情报理论与实践》2023年第10期107-114,95,共9页Information Studies:Theory & Application

基  金:上海市软科学项目“面向三大先导产业科技前沿的创新联合体合作模式、协同机制与激励政策研究”的成果,项目编号:21692191800。

摘  要:[目的/意义]精准有效识别技术机会并提前布局,对企业建立技术层面的核心竞争优势至关重要。针对现有研究侧重技术机会发现而欠缺评价的问题,建立一种基于生成式拓扑映射(GTM)和价值主张视角下系统动力学(SD)建模的潜在技术机会识别与评价研究框架。[方法/过程]首先,引入k3n-error确定最优GTM模型参数;其次,通过GTM模型绘制技术地图识别技术空白,经由逆向映射识别出潜在技术机会;最后,基于价值主张的视角,借助SD建模评价潜在技术机会的价值,并以绝缘栅极双极晶体管为示例,验证了构建框架的可行性。[结果/结论]构建的框架能够提升技术机会识别的精确性,以技术的价值导向为企业优化布局技术方向提供理论与实践支持。[Purpose/significance]Accurate and effective identification of technology opportunities for early deployment is crucial for companies to establish core competitive advantages at the technology level.To address the problem that existing research focuses on technology opportunity discovery but lacks evaluation,this paper establishes a research framework for potential technology opportunity identification and evaluation based on generative topological mapping(GTM)and system dynamics(SD)modeling from a value proposition perspective.[Method/process]Firstly,k3n-error is introduced to determine the optimal GTM model parameters;secondly,technology vacuums are identified by drawing technology maps through the GTM model and potential technology opportunities are identified through reverse mapping;finally,the value of potential technology opportunities is evaluated by SD modeling based on the value proposition perspective.The feasibility of the framework is verified using an insulated gate bipolar transistor as an example.[Result/conclusion]The results show that the framework can improve the accuracy of technology opportunity identification and provide theoretical and practical support for enterprises to optimize the layout of technology directions with the value orientation of technology.

关 键 词:技术机会识别 技术地图 生成式拓扑映射 价值主张 系统动力学 

分 类 号:G353.1[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象