检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵敬涛 赵泽方 岳兆娟[1] 李俊[1,2] ZHAO Jingtao;ZHAO Zefang;YUE Zhaojuan;LI Jun(Computer Network Information Center,Chinese Academy of Sciences,Beijing 100083,China;School of Computer Science and Technology,University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院计算机网络信息中心,北京100083 [2]中国科学院大学计算机科学与技术学院,北京100049
出 处:《计算机应用》2023年第10期3107-3113,共7页journal of Computer Applications
基 金:国家重点研发计划项目(2019YFB1405801)。
摘 要:为了应对互联网环境中企业自律性低、违规事件频发、政府监管困难的现状,提出一种针对企业自律性评价的双层集成残差预测神经网络(TenrepNN)模型,并融合Stacking和Bagging集成学习的思想提出一种集成学习的新范式Adjusting。TenrepNN模型具有两层结构:第1层使用3种基学习器初步预测企业评分;第2层采用残差修正的思想,提出残差预测神经网络以预测每个基学习器的输出偏差。最后,将偏差与基学习器评分相加得到最终输出。在企业自律性评价数据集上,相较于传统的神经网络,TenrepNN模型的均方根误差(RMSE)降低了2.7%,企业自律性等级分类准确率达到了94.51%。实验结果表明,TenrepNN模型集成不同的基学习器降低预测方差,并使用残差预测神经网络显式地降低偏差,从而能够准确评价企业自律性以实现差异化的动态监管。In order to cope with the current situations of low self-discipline,frequent violation events and difficult government supervision of enterprises in the internet environment,a Two-layer ensemble residual prediction Neural Network(TenrepNN)model was proposed to evaluate the self-discipline of enterprises.And by integrating the ideas of Stacking and Bagging ensemble learning,a new paradigm of integrated learning was designed,namely Adjusting.TenrepNN model has a two-layer structure.In the first layer,three base learners were used to predict the enterprise score preliminarily.In the second layer,the idea of residual correction was adopted,and a residual prediction neural network was proposed to predict the output deviation of each base learner.Finally,the final output was obtained by adding the deviations and the base learner scores together.On the enterprise self-discipline evaluation dataset,compared with the traditional neural network,the proposed model has the Root Mean Square Error(RMSE)reduced by 2.7%,and the classification accuracy in the selfdiscipline level reached 94.51%.Experimental results show that by integrating different base learners to reduce the variance and using residual prediction neural network to decrease the deviation explicitly,TenrepNN model can accurately evaluate enterprise self-discipline to achieve differentiated dynamic supervision.
关 键 词:企业自律性评价 集成学习范式 残差预测神经网络 显式偏差修正 互联网企业监管
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.177