Simulation of Cement Hydration and Porous Structures by the Hydration-Pixel Probability Model  

在线阅读下载全文

作  者:TIAN Cong WEI Xiaosheng 

机构地区:[1]School of Civil Engineering,Architecture&The Environment,Hubei University of Technology,Wuhan 430072,China [2]School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430072,China

出  处:《Journal of Wuhan University of Technology(Materials Science)》2023年第5期1044-1055,共12页武汉理工大学学报(材料科学英文版)

摘  要:This research proposes a new pixel-based model called the hydration-pixel probability model which aims to simplify cement hydration as a probability problem.The hydration capacity of cement,the solution within pores,and the difiusion of solid particles are represented by three probability functions derived from experimental data obtained through electrical resistivity and hydration heat measurements.The principle of the model is relatively simple,and the parameters have clear physical meanings.In this research,the porous structures of difierent cement pastes with w/c ratios of 0.3,0.4,and 0.5 are investigated.The results indicate that the porosity of the cement paste decreases during the first few hours,followed by a rapid decline,and eventually reaches a steady state.The porosity of the paste decreases as w/c ratio decreases,and the rate of decrease is more rapid in the early stages.Referring to the porosity curves,the average degree of hydration and depth of hydration can be derived.The simulation results show that the hydration degree of paste composed of irregular particles is higher than that of the paste composed of round particles.The trend in the development of the average hydration depth is similar to that of the average hydration degree.Upon analyzing the average growth rate of the hydration depth,it is observed that there are two peaks in the curves,which correspond to the three characteristic points in the electrical resistivity test.

关 键 词:cement hydration model POROSITY hydration degree SIMULATION 

分 类 号:TQ1[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象