UAMP-Based Delay-Doppler Channel Estimation for OTFS Systems  被引量:4

在线阅读下载全文

作  者:Zhongjie Li Weijie Yuan Qinghua Guo Nan Wu Ji Zhang 

机构地区:[1]Department of Electronic and Electrical Engineering,Southern University of Science and Techonology,Shenzhen 518055,China [2]School of Electrical,Computer and Telecommunications Engineering,University of Wollongong,Wollongong,NSW 2522,Australia [3]School of Integrated Circuits and Electronics,Beijing Institute of Technology,Beijing 100081,China [4]School of Mathematics and Statistics,Henan University of Science and Technology,Luoyang 471000,China

出  处:《China Communications》2023年第10期70-84,共15页中国通信(英文版)

基  金:supported by the Key Scientific Research Project in Colleges and Universities of Henan Province of China(Grant Nos.21A510003);Science and the Key Science and Technology Research Project of Henan Province of China(Grant Nos.222102210053).

摘  要:Orthogonal time frequency space(OTFS)technique,which modulates data symbols in the delay-Doppler(DD)domain,presents a potential solution for supporting reliable information transmission in highmobility vehicular networks.In this paper,we study the issues of DD channel estimation for OTFS in the presence of fractional Doppler.We first propose a channel estimation algorithm with both low complexity and high accuracy based on the unitary approximate message passing(UAMP),which exploits the structured sparsity of the effective DD domain channel using hidden Markov model(HMM).The empirical state evolution(SE)analysis is then leveraged to predict the performance of our proposed algorithm.To refine the hyperparameters in the proposed algorithm,we derive the update criterion for the hyperparameters through the expectation-maximization(EM)algorithm.Finally,Our simulation results demonstrate that our proposed algorithm can achieve a significant gain over various baseline schemes.

关 键 词:orthogonal time frequency space(OTFS) channel estimation hidden Markov model(HMM) unitary approximate message passing(UAMP) 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象