Cross-Band Spectrum Prediction Algorithm Based on Data Conversion Using Generative Adversarial Networks  

在线阅读下载全文

作  者:Chuang Peng Rangang Zhu Mengbo Zhang Lunwen Wang 

机构地区:[1]College of Electronic Engineering,National University of Defense Technology,Hefei 230037,China

出  处:《China Communications》2023年第10期136-152,共17页中国通信(英文版)

基  金:supported by the fund coded,National Natural Science Fund program(No.11975307);China National Defence Science and Technology Innovation Special Zone Project(19-H863-01-ZT-003-003-12).

摘  要:Spectrum prediction is one of the new techniques in cognitive radio that predicts changes in the spectrum state and plays a crucial role in improving spectrum sensing performance.Prediction models previously trained in the source band tend to perform poorly in the new target band because of changes in the channel.In addition,cognitive radio devices require dynamic spectrum access,which means that the time to retrain the model in the new band is minimal.To increase the amount of data in the target band,we use the GAN to convert the data of source band into target band.First,we analyze the data differences between bands and calculate FID scores to identify the available bands with the slightest difference from the target predicted band.The original GAN structure is unsuitable for converting spectrum data,and we propose the spectrum data conversion GAN(SDC-GAN).The generator module consists of a convolutional network and an LSTM module that can integrate multiple features of the data and can convert data from the source band to the target band.Finally,we use the generated target band data to train the prediction model.The experimental results validate the effectiveness of the proposed algorithm.

关 键 词:cognitive radio cross-band spectrum prediction deep learning generative adversarial network 

分 类 号:TN925[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象