检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yufei Zhang Arno Schlueter Christoph Waibel
出 处:《Energy and AI》2023年第2期1-21,共21页能源与人工智能(英文)
摘 要:Building Integrated Photovoltaics (BIPV) is a promising technology to decarbonize urban energy systems viaharnessing solar energy available on building envelopes. While methods to assess solar irradiation, especiallyon rooftops, are well established, the assessment on building facades usually involves a higher effort due tomore complex urban features and obstructions. The drawback of existing physics-based simulation programsare that they require significant manual modeling effort and computing time for generating time resolveddeterministic results. Yet, solar irradiation is highly intermittent and representing its inherent uncertainty maybe required for designing robust BIPV energy systems. Targeting on these drawbacks, this paper proposes adata-driven model based on Deep Generative Networks (DGN) to efficiently generate stochastic ensembles ofannual hourly solar irradiance time series on building facades with uncompromised spatiotemporal resolutionat the urban scale. The only input required are easily obtainable fisheye images as categorical shading maskscaptured from 3D models. In principle, even actual photographs of urban contexts can be utilized, given they are semantically segmented. The potential of our approach is that it may be applied as a surrogate for timeconsuming simulations, when facing lacking information (e.g., no 3D model exists), and to use the generatedstochastic time-series ensembles in robust energy systems planning. Our validations exemplify a good fidelityof the generated time series when compared to the physics-based simulator. Due to the nature of the usedDGNs, it remains an open challenge to precisely reconstruct the ground truth one-to-one for each hour of theyear. However, we consider the benefits of the approach to outweigh the shortcomings. To demonstrate themodel’s relevance for urban energy planning, we showcase its potential for generative design by parametricallyaltering characteristic features of the urban environment and producing corresponding time series on buildingfacade
关 键 词:Urban solar potential Data-driven Deep Generative Networks(DGN) Building-integrated photovoltaic(BIPV) Generative Adversarial Network(GAN) Variational Autoencoder(VAE)
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147