SolarGAN:Synthetic annual solar irradiance time series on urban building facades via Deep Generative  被引量:1

在线阅读下载全文

作  者:Yufei Zhang Arno Schlueter Christoph Waibel 

机构地区:[1]Chair of Architecture and Building Systems(A/S),ETH Zurich,Stefano-Franscini-Platz 1,8093 Zurich,Switzerland

出  处:《Energy and AI》2023年第2期1-21,共21页能源与人工智能(英文)

摘  要:Building Integrated Photovoltaics (BIPV) is a promising technology to decarbonize urban energy systems viaharnessing solar energy available on building envelopes. While methods to assess solar irradiation, especiallyon rooftops, are well established, the assessment on building facades usually involves a higher effort due tomore complex urban features and obstructions. The drawback of existing physics-based simulation programsare that they require significant manual modeling effort and computing time for generating time resolveddeterministic results. Yet, solar irradiation is highly intermittent and representing its inherent uncertainty maybe required for designing robust BIPV energy systems. Targeting on these drawbacks, this paper proposes adata-driven model based on Deep Generative Networks (DGN) to efficiently generate stochastic ensembles ofannual hourly solar irradiance time series on building facades with uncompromised spatiotemporal resolutionat the urban scale. The only input required are easily obtainable fisheye images as categorical shading maskscaptured from 3D models. In principle, even actual photographs of urban contexts can be utilized, given they are semantically segmented. The potential of our approach is that it may be applied as a surrogate for timeconsuming simulations, when facing lacking information (e.g., no 3D model exists), and to use the generatedstochastic time-series ensembles in robust energy systems planning. Our validations exemplify a good fidelityof the generated time series when compared to the physics-based simulator. Due to the nature of the usedDGNs, it remains an open challenge to precisely reconstruct the ground truth one-to-one for each hour of theyear. However, we consider the benefits of the approach to outweigh the shortcomings. To demonstrate themodel’s relevance for urban energy planning, we showcase its potential for generative design by parametricallyaltering characteristic features of the urban environment and producing corresponding time series on buildingfacade

关 键 词:Urban solar potential Data-driven Deep Generative Networks(DGN) Building-integrated photovoltaic(BIPV) Generative Adversarial Network(GAN) Variational Autoencoder(VAE) 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象