Development and comparison of local solar split models on the example ofCentral Europe  

在线阅读下载全文

作  者:E.Schlager G.Feichtinger H.Gursch 

机构地区:[1]Know-Center GmbH,Inffeldgasse 13/6,8010 Graz,Austria

出  处:《Energy and AI》2023年第2期31-43,共13页能源与人工智能(英文)

摘  要:Solar radiation influences many and diverse fields like energy generation, agriculture and building operation.Hence, simulation models in these fields often rely on precise information about solar radiation. Measurementsare often restricted to global irradiance, whereby measurements of its single components, direct and diffuseirradiance, are sparse. However, information on both, the direct and diffuse irradiance, is necessary forsimulation models to work reliably. In this study, solar separation models are developed using 10-min trainingdata from two different locations in Austria. Direct horizontal irradiance is predicted via regressing the directfraction using several objective functions. The models are first trained on a data set including data from bothlocations, and evaluated regarding root mean squared deviation (RMSD), mean bias deviation (MBD), andcoefficient of determination (R2) on measured and estimated direct normal irradiance. The two best performing models are then selected for further analysis. This analysis comprises of an evaluation of the models per season,transferability of trained modes between two locations in Austria, a transferability and generalisability studyconducted for four more locations in Central Europe, and a comparison with the trusted Engerer model. Thesolar separation model with polynomial terms up to order three and Ridge regularisation outperforms thesecond model based a logistic term in combination with mixed quadratic terms as well as the Engerer model.

关 键 词:Solar irradiance Direct normal irradiance Solar separation model Solar regression Solar model transferability SEASONALITY 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象