Smart energy management system framework for population dynamics modelling and suitable energy trajectories identification in islanded micro-grids  

在线阅读下载全文

作  者:Mehdi Mounsif Fabien Medard 

机构地区:[1]Akkodis,7 Bd Henri Ziegler,Blagnac,31700,Occitanie,France

出  处:《Energy and AI》2023年第3期104-116,共13页能源与人工智能(英文)

摘  要:In an increasingly electrified and connected world,renewable energy production and robust distribution as well as sobriety paradigm,both for the individual and the society,will most likely play a central role regarding global systems stability.Consequently,while being able to conceive efficient storage systems coupled with robust energy management strategies present significant interests,a number of related studies often consider the human behaviour factor separately.While not decisive in large industrial factories,human demeanor impact cannot be overlooked in residential areas.As such,this work proposes an innovative and flexible dynamic population model,inspired from epidemiological methods,that allows simulation of a vast spectrum of social scenarios.By pairing this formalization with a smart energy management strategy,a complete framework is proposed.In particular,beyond the theoretical identification of sustainable parameters in a wide diversity of configurations,our experiments demonstrate the relevance of reinforcement learning agents as efficient energy management policies.Depending on the scenario,the trained agent enables an increase of the sustainability areas over baseline strategies up to 200%,thus hinting at ultimately softer societal impact.

关 键 词:Energy storage and management Reinforcement learning Population dynamics Optimization 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象