检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chanin Panjapornpon Santi Bardeeniz Mohamed Azlan Hussain Kanthika Vongvirat Chayanit Chuay-ock
机构地区:[1]Department of Chemical Engineering,Center of Excellence on Petrochemicals and Materials Technology,Faculty of Engineering,Kasetsart University,Bangkok,10900,Thailand [2]Department of Chemical Engineering,Faculty of Engineering,University of Malaya,50603,Kuala Lumpur,Malaysia
出 处:《Energy and AI》2023年第4期43-59,共17页能源与人工智能(英文)
摘 要:Energy efficiency in the petrochemical industry is crucial in reducing energy consumption and environmental impact.An accurate energy efficiency model will provide valuable insight for supporting operational adjustment decisions.In practice,due to inconsistent sampling intervals in the petrochemical industry,the traditional approach for obtaining energy efficiency may be unreliable and difficult to handle these multirate data char-acteristics.Therefore,in this paper,a multi-channel convolutional neural network model integrating a model parameter-based transfer learning approach is proposed to improve the prediction of energy efficiency under inconsistent sampling intervals.The multi-channel structure aims to recognize a different pattern from the dataset by convolving the information along the time dimension.Concurrently,transfer learning allows the model to learn a new pattern of input after the model is fully trained.Finally,the performance for energy ef-ficiency prediction and saving analysis is validated by applying it to the vinyl chloride monomer production case study.The result shows that the proposed model outperformed traditional models and typical convolutional neural network structures in terms of accuracy and reproducibility,with an r-square of 0.97.The utilization of transfer learning prevents a significant drop in performance and enhances adaptability in model learning on real-time energy tracking.Moreover,the energy gap analysis of the prediction result identified a significant energysaving potential,which would decrease annual energy consumption by 7.25%on average and a 5,709-ton reduction in carbon dioxide emissions.
关 键 词:Energy efficiency prediction Transfer learning Petrochemical process Multirate prediction Convolutional neural network
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.154.145