检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China
出 处:《Journal of Systems Science & Complexity》2023年第4期1717-1737,共21页系统科学与复杂性学报(英文版)
基 金:This research was supported by the Science Challenge Project under Grant No.TZ2018001.
摘 要:Recently,uncertainty quantification is getting more and more attention,especially for computer model calibration.However,most of the existing papers assume the errors follow a Gaussian or sub-Gaussian distribution,which would not be satisfied in practice.To overcome the limitation of the traditional calibration procedures,the authors develop a robust calibration procedure based on Huber loss,which can deal with responses with outliers and heavy-tail errors efficiently.The authors propose two different estimators of the calibration parameters based on ordinary least estimator and L_(2)calibration respectively,and investigate the nonasymptotic and asymptotic properties of the proposed estimators under certain conditions.Some numerical simulations and a real example are conducted,which verifies good performance of the proposed calibration procedure.
关 键 词:Heavy-tailed error M-ESTIMATION OUTLIERS ROBUSTNESS uncertainty quantification
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175