Robust Calibration of Computer Models Based on Huber Loss  

在线阅读下载全文

作  者:SUN Yang FANG Xiangzhong 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China

出  处:《Journal of Systems Science & Complexity》2023年第4期1717-1737,共21页系统科学与复杂性学报(英文版)

基  金:This research was supported by the Science Challenge Project under Grant No.TZ2018001.

摘  要:Recently,uncertainty quantification is getting more and more attention,especially for computer model calibration.However,most of the existing papers assume the errors follow a Gaussian or sub-Gaussian distribution,which would not be satisfied in practice.To overcome the limitation of the traditional calibration procedures,the authors develop a robust calibration procedure based on Huber loss,which can deal with responses with outliers and heavy-tail errors efficiently.The authors propose two different estimators of the calibration parameters based on ordinary least estimator and L_(2)calibration respectively,and investigate the nonasymptotic and asymptotic properties of the proposed estimators under certain conditions.Some numerical simulations and a real example are conducted,which verifies good performance of the proposed calibration procedure.

关 键 词:Heavy-tailed error M-ESTIMATION OUTLIERS ROBUSTNESS uncertainty quantification 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象