General Solutions of First-Order Algebraic ODEs in Simple Constant Extensions  

在线阅读下载全文

作  者:MITTERAMSKOGLER Johann Josef WINKLER Franz 

机构地区:[1]Research Institute for Symbolic Computation(RISC),Johannes Kepler Universität Linz,A-4040 Linz,Austria

出  处:《Journal of Systems Science & Complexity》2023年第4期1769-1788,共20页系统科学与复杂性学报(英文版)

摘  要:If a first-order algebraic ODE is defined over a certain differential field,then the most elementary solution class,in which one can hope to find a general solution,is given by the adjunction of a single arbitrary constant to this field.Solutions of this type give rise to a particular kind of generic point—a rational parametrization—of an algebraic curve which is associated in a natural way to the ODE’s defining polynomial.As for the opposite direction,we show that a suitable rational parametrization of the associated curve can be extended to a general solution of the ODE if and only if one can find a certain automorphism of the solution field.These automorphisms are determined by linear rational functions,i.e.,Möbius transformations.Intrinsic properties of rational parametrizations,in combination with the particular shape of such automorphisms,lead to a number of necessary conditions on the existence of general solutions in this solution class.Furthermore,the desired linear rational function can be determined by solving a comparatively simple differential system over the ODE’s field of definition.These results hold for arbitrary differential fields of characteristic zero.

关 键 词:Algebraic curve algebraic differential equation general solution Möbius transformation rational parametrization 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象