边缘计算中多服务器协同任务缓存策略  被引量:2

Multi-Server Collaborative Task Caching Strategy in Edge Computing

在线阅读下载全文

作  者:马世雄 葛海波 宋兴 MA Shixiong;GE Haibo;SONG Xing(School of Electronic Engineering,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)

机构地区:[1]西安邮电大学电子工程学院,西安710121

出  处:《计算机工程与应用》2023年第20期245-253,共9页Computer Engineering and Applications

基  金:陕西省自然科学基金(2011JM8038);陕西省重点产业创新链(群)项目(S2019-YF-ZDCXL-0098)。

摘  要:针对边缘服务器有限的计算、存储资源与大量用户任务请求之间的矛盾,设计了基于多服务器协同的边缘计算任务缓存网络架构,该架构中边缘服务器可以在内存中缓存并执行用户任务,未缓存的任务放在云端执行。结合用户任务请求时变和邻近区域用户更倾向于请求相似任务的特点,提出一种基于改进Soft Actor-Critic的多服务器协同任务缓存算法(MSAC)。该算法以最小化用户平均任务执行时延为目标,为避免反复选择同一动作而收敛于局部最优,引入最大熵模型来鼓励边缘服务器探索最优动作。通过设计经验共享机制,收集并学习本地边缘服务器和相邻服务器的经验以优化任务缓存策略。仿真结果表明,与最高流行度算法、独立SAC算法、DQN算法、遗传算法相比,所提出的MSAC算法在降低用户任务平均执行时延方面的效果最好。Aiming at the contradiction between the limited computing and storage resources of the edge server and a large number of user task requests,this paper designs an edge computing task cache network architecture based on multi-server collaboration.In this architecture,the edge server can cache and execute user tasks in memory.The cached tasks are executed on the cloud.Combining the characteristics of time-varying user task requests and users in adjacent areas tending to request similar tasks,a multi-server task caching algorithm(MSAC)based on improved Soft Actor-Critic is proposed.The algorithm aims at minimizing the user's average task execution delay.In order to avoid repeatedly choosing the same action and converge to a local optimum,a maximum entropy model is introduced to encourage the edge server to explore the optimal action.By designing an experience sharing mechanism,the task caching strategy is optimized by collecting and learning the experience of local edge servers and adjacent servers.Simulation results show that compared with the highest popularity algorithm,independent SAC algorithm,DQN algorithm,and genetic algorithm,the proposed MSAC algorithm has the best effect in reducing the average execution delay of user tasks.

关 键 词:边缘计算 任务缓存 多服务器协作 深度强化学习 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象