湖北省能源消耗的碳排放现状及峰值预测  被引量:2

Current Situation of Carbon Emission and Peak Prediction of Energy Consumption in Hubei Province

在线阅读下载全文

作  者:李荣贤 王小雨[1] LI Rongxian;WANG Xiaoyu(Intelligent Manufacturing College of Jianghan University)

机构地区:[1]江汉大学智能制造学院

出  处:《上海节能》2023年第10期1473-1482,共10页Shanghai Energy Saving

基  金:湖北省教育厅科学研究计划指导性项目(B2022277)。

摘  要:湖北省正处在工业化和城镇化的加速发展时期,其重化工产业的特点十分突出,在短时间内很难改变以化石能源为主体的能源结构,碳排放量也会继续快速增加。分析了湖北省碳排放现状并通过碳排放系数法估算湖北省2001-2019年碳排放量,在此基础上使用STIRPAT模型,运用岭回归并结合情景分析法预测湖北省“碳达峰”时间与碳排放量峰值。结果表明:随着湖北省经济的高速增长,湖北省CO_(2)的排放量也保持较高增速;煤炭的消耗仍然是湖北省CO_(2)排放量较大的主要因素;在低、中、高三种情景模式下,湖北省碳排放峰值介于1.8亿~1.9亿t。湖北省能源消耗碳排放峰值出现时间介于2030-2035年。Hubei Province is in the period of accelerated development of industrialization and urbanization,and its heavy chemical industry is very prominent.It is difficult to change the energy structure dominated by fossil energy in a short period of time,and carbon emissions will continue to increase rapidly.This paper analyzes the current situation of carbon emissions in Hubei Province and estimates the carbon emissions in Hubei Province from 2001 to 2019 by using the carbon emission coefficient method.On this basis,the STIRPAT model is used,and the ridge regression method is combined with scenario analysis to predict the time of"Carbon Peaking"and the peak carbon emissions in Hubei Province.The results show that with the rapid economic growth in Hubei Province,the CO2 emissions in Hubei Province also maintain a high growth rate;coal consumption is still the main factor contributing to the large CO2 emissions in Hubei Province;under the low,medium and high three scenarios,the peak carbon emissions in Hubei Province are between 180 million and 190 million tons.The peak of energy consumption carbon emissions in Hubei Province appears between 2030 and 2035.

关 键 词:碳排放现状 碳达峰预测 化石能源消耗 

分 类 号:X322[环境科学与工程—环境工程] F426.2[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象