检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柯剑[1,2] 王琦琦 Ke Jian;Wang Qiqi
机构地区:[1]北京工商大学商学院 [2]闽江学院新华都商学院
出 处:《管理会计研究》2023年第5期22-32,共11页MANAGEMENT ACCOUNTING STUDIES
摘 要:本文基于制造业企业面临的转型环境特征以及风险管理框架中的风险源评估要素,提出研发型制造业的风险测度指标体系,并利用主成分分析法进一步筛选关键指标,利用随机森林算法构建基于机器学习的研发型制造业财务风险预警模型。研究发现,该财务风险预警模型预测准确率较高,总资产净利润率、财务费用率和研发投入强度等是预测研发型企业财务风险的关键指标。该研究结果对处于数字化转型阶段的研发型制造业企业实施有效的风险管理具有实际的应用价值。This article proposes a risk measurement indicator system for R&D driven manufacturing based on the characteristics of the transforming environment faced by manufacturing enterprises and the risk source assessment elements in the risk management framework.Principal component analysis is used to further screen key indicators,and a machine learning based financial risk warning model for R&D manufacturing is constructed using random forest algorithm.This paper finds that the financial risk warning model has high prediction accuracy,and the key indicators for predicting financial risks in R&D driven enterprises include total asset net profit margin,financial expense ratio,and R&D expense ratio.The research results have practical application value for implementing effective risk management for R&D manufacturing enterprises in the digital transformation stage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28