GF-7卫星多角度特征作物识别  被引量:2

Crop recognition by multiangle features of GF-7 satellite

在线阅读下载全文

作  者:孙智虎 张锦水 洪友堂[2] 杨珺雯 朱爽[5] SUN Zhihu;ZHANG Jinshui;HONG Youtang;YANG Junwen;ZHU Shuang(State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China;School of Land Science and Technology,China University of Geosciences,Beijing 100083,China;Beijing Engineering Research Center for Global Land Remote Sensing Products,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;Institute of Remote Sensing Science and Engineering,Faculty of Geographical Science,Beijing Normal University,Beijing 100875,China;Beijing Polytechnic College,Beijing 100042,China)

机构地区:[1]遥感科学国家重点实验室北京师范大学,北京100875 [2]中国地质大学(北京)土地科学技术学院,北京100083 [3]北京市陆表遥感数据产品工程技术研究中心,北京100875 [4]北京师范大学地理科学学部遥感科学与工程研究院,北京100875 [5]北京工业职业技术学院,北京100042

出  处:《遥感学报》2023年第9期2127-2138,共12页NATIONAL REMOTE SENSING BULLETIN

基  金:国家自然科学基金重大项目(编号:42192580,42192584);国家高分辨率对地观测系统重大专项(民用部分)(编号:20-Y30F10-9001-20/22)。

摘  要:多角度遥感对地观测能够提供更加丰富、多方向的遥感特征,提高地类之间的可区分性,为地物覆盖的精确识别打下坚实的数据基础。GF-7是中国继ZY-3卫星后的首颗亚米级测绘卫星,这为利用多角度特性解决“异物同谱”的问题,提高作物的识别精度带来了机遇。本文利用GF-7前视、后视全色及后视多光谱数据,各种特征组合输入到支撑向量机分类器进行分类,相对于光谱、纹理等特征,分析多角度特征对作物识别精度的作用。结果表明,较仅应用光谱特征,光谱与角差特征组合使用大蒜和冬小麦的制图精度分别提高了4.07%和3.15%,用户精度分别提高了6.73%和2.12%;较应用光谱与纹理特征,光谱、纹理与角差特征组合使用大蒜和冬小麦的制图精度分别提高了3.14%和1.01%,用户精度分别提高了5.11%和0.67%。通过McNemar检验分析,这种分类精度的提高是稳定的,角差特征使用能有效提高作物的识别精度。究其原因,多角度特征对不同作物类型在多角度观测时的光谱响应具备特有的差异性,这种差异提高了作物之间的可分性,从而保证作物遥感识别的精度。Multiangle remote sensing can provide richer,multidirectional features for ground object observation,improve the distinguishability between land types,and lay a solid data foundation for the accurate identification of ground cover.GF-7 is the first domestic sub meter surveying and mapping satellite after ZY-3 satellite,which brings an opportunity to solve the problem of“foreign matter homospectrum”using multiangle characteristics and to improve the identification accuracy of crops.In this paper,GF-7 forward-looking and backwardlooking panchromatic and backward-looking multispectral data are used,and various features combinations are input to the support vector machine classifier to analyze the influence of multiangle features on crop recognition accuracy relative to the spectral and texture features.Results show that compared with only spectral features,with the addition of the angle difference feature,the production accuracy of garlic and winter wheat increased by 4.07%and 3.15%,respectively,and the user accuracy increased by 6.73%and 2.12%,respectively.Compared with the combination of spectral and texture features,with the addition of the angle difference feature,the production accuracy of garlic and winter wheat increased by 3.14%and 1.01%,respectively,and the user accuracy increased by 5.11%and 0.67%,respectively.Through the analysis of McNemar test,the improvement of classification accuracy is stable,angle difference feature can effectively improve the identification accuracy of crops.Tracing it to its cause,the multiangle characteristics of GF-7 satellite have unique differences in the spectral response of different crop types during multiangle observation.The difference improves the separability between crops to ensure the accuracy of crop remote sensing mapping.

关 键 词:GF-7 支撑向量机 角差 遥感 冬小麦 大蒜 农业 

分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置] P2[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象