少模光纤强耦合通信系统信号恢复技术综述  被引量:2

Survey of Signal Recovery Technique in Few-Mode Fiber Communication System with Strong Mode Coupling

在线阅读下载全文

作  者:龙健宇 张冰[1] 杨雄伟 余建军[1] Long Jianyu;Zhang Bing;Yang Xiongwei;Yu Jianjun(Key Laboratory of EMW Information,Department of Communication Science and Engineering,Fudan University,Shanghai 200433,China)

机构地区:[1]复旦大学通信科学与工程系电磁波信息科学教育部重点实验室,上海200433

出  处:《激光与光电子学进展》2023年第17期1-17,共17页Laser & Optoelectronics Progress

基  金:国家重点研发计划(2018YFB1800905);国家自然科学基金(62127802)。

摘  要:采用少模光纤强耦合模分复用技术是大容量光纤通信系统的一种主要方案,而数字信号处理能在数字域补偿信道中带来的损伤,为信号恢复提供了灵活性并进一步提升传输容量。介绍了少模光纤强耦合通信系统中相比单模光纤系统所受到的额外损伤,并介绍了补偿损伤所使用的多输入多输出(MIMO)均衡算法、空时编码(STC)算法、干扰消除算法和最大似然估计算法的工作原理和主要研究进展,同时阐述了当前这些算法在复杂度、传输时延、光传输速率等方面仍存在局限性。结果表明,MIMO均衡算法结合STC有明显优势,在未来大容量长距离少模光纤强耦合通信系统中具有重要的应用意义。The use of few-mode optical fiber strong coupling mode division multiplexing technology is a major solution for large-capacity optical fiber communication systems,and digital signal processing can compensate for channel damage in the digital domain,providing flexibility for signal recovery and further improving transmission capacity.In this paper,the impairments which occur in the few-mode fiber system with strong mode coupling but not in single-mode fiber system are introduced.The recovery techniques for those impairments like multiple input multiple output(MIMO)equalizer,spacetime coding(STC),interference cancellation,and maximum likelihood estimation as well as their principles and research results are also introduced.The shortcomings of those algorithms in terms of complexity,delay,and transmission rate are also discussed.The results show that MIMO equalization algorithm combined with STC has obvious advantages.It has important application significance in the high-capacity long-distance few-mode fiber communication system with strong mode coupling in the future.

关 键 词:光通信 模分复用 强耦合 少模光纤 多输入多输出均衡器 空时编码 干扰消除 

分 类 号:TN913[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象