检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李中海 郭永峰[2] 任国栋[3] 张可伟[4] 缪颖 郭红卫 LI Zhonghai;GUO Yongfeng;REN Guodong;ZHANG Kewei;MIAO Ying;GUO Hongwei(College of Biological Science and Technology,Beijing Forestry University,Beijing 100083,China;Tobacco Research Institute,Chinese Academy of Agricultural Sciences,Qingdao,Shandong 266101,China;Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering,School of Life Sciences,FudanUniversity,Shanghai 200438,China;College of Life Sciences,Zhejiang Normal University,Jinhua,Zhejang 321004,China;Fujian Provincial Key Laboratory of Plant Functional Biology and Green Agriculture,Fuzhou 350002,China;Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes,Department of Biology,Southern University of Science and Technology(SUSTech),Shenzhen,Guangdong 518055,China)
机构地区:[1]北京林业大学生物科学与技术学院,北京100083 [2]中国农业科学院烟草研究所,山东青岛266101 [3]复旦大学生命科学学院生物多样性科学与生态工程教育部重点实验室,上海200438 [4]浙江师范大学生命科学学院,浙江金华321004 [5]福建省植物功能生物学与绿色农业重点实验室,福州350002 [6]南方科技大学生物系广东省高等学校植物细胞工厂分子设计重点实验室,广东深圳518055
出 处:《植物生理学报》2023年第9期1627-1656,共30页Plant Physiology Journal
基 金:国家自然科学基金(31970196、31570286、31670277和31770318);国家重点研发计划(2019YFA0903904);深圳市科技计划(KQTD20190929173906742);上海市科学技术委员会项目(15JC1400800);中国农业科学院农业科技创新项目(ASTIP-TRI02)。
摘 要:叶片衰老是叶片发育的最后一个阶段,属于有丝分裂后衰老,是营养同化到营养转运的功能转变过程,对植物的生存至关重要。叶片衰老的启动和进程受到各种内部因素如年龄及植物激素,以及外部因素如环境胁迫的调控。科研人员通过对模式植物拟南芥(Arabidopsis thaliana)及作物的正向遗传学筛选和反向遗传学研究,鉴定出衰老性状改变的突变体,并对数百个衰老相关基因进行了功能研究,从而在解析叶片衰老的分子机制方面取得了重要进展。叶片衰老涉及高度复杂的遗传程序,这些程序受到多层次调控,包括染色质水平、转录及转录后水平、翻译及翻译后水平等。由于叶片衰老与光合作用、养分转运以及胁迫反应等密切相关,植物学家在设计基于已知的衰老调控机制的策略方面做出了很多尝试,旨在通过操纵叶片衰老的起始和进展进而提高作物的产量、品质或改善园艺性能。本文对叶片衰老进行全面综述,并从遗传和分子网络的角度讨论叶片衰老的多维调控的最新进展。我们还提出叶片衰老研究领域亟待解决的关键问题,包括叶龄的本质、功能性滞绿、不同调控途径之间的协调、源-库关系和营养转运以及叶片衰老在农林作物育种中的应用。Leaf senescence,the last stage of leaf development,is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is es-sential for plants'fitness.The initiation and progression of leaf senescence are regulated by a variety of in-ternal and external factors such as age,phytohormones,and environmental stresses.Significant break-throughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assess-ment of hundreds of senescence-associated genes(SAGs)via reverse genetic research in model plant Ara-bidopsis thaliana as well as in crop plants.Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation,including chromatin and transcription regulation,post-transcriptional,translational and post-translational regulation.Due to the significant impact of leaf senescence on photosynthesis,nutrient remobilization,and stress responses,much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence,aiming for higher yield,better quality,or improved horticultural perfor-mance in crop plants.This review aims to provide an overview of leaf senescence and discuss recent ad-vances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspec-tives.We also put forward the key issues need to be addressed,including the nature of leaf age,functional stay-green trait,coordination between different regulatory pathways,source-sink relationship and nutrient remobilization,as well as translational researches on leaf senescence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.73.187