机构地区:[1]Institute for Composites Science Innovation(InCSI),School of Materials Science and Engineering,Zhejiang University,Hangzhou 310027,China [2]Key Laboratory of Advanced Materials(MOE),School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China [3]Department of Condensed Matter Physics,ICMS-CSIC,University of Seville,P.O.Box 1065,41080 Sevilla,Spain [4]School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China
出 处:《Science China Materials》2023年第9期3670-3680,共11页中国科学(材料科学(英文版)
基 金:supported by the National Key Research and Development Program of China (2021YFB3501504 and 2021YFE0100500);Zhejiang Provincial Key Research and Development Program (2021C01004);Zhejiang Natural Science Foundation (ZJNSF, LR20E010001);the funding from AEI (PID2019105720RB-I00/AEI/10.13039/501100011033);Consejería de Economía, Conocimiento, Empresas y Universidad de la Junta de Andalucía (P18-RT746)。
摘 要:基于磁热效应的磁制冷技术可以更好满足能源高效消耗和转化的要求.以工程化视角来看,制备磁热复合材料是结合理想磁热性能、高热导率和良好力学性能的有效方式.在本文中,采用激光等离子烧结技术(SPS)制备了Ni-Mn-Ga/Cu磁热复合材料,并将其与利用传统方式制备的材料进行了对比.本文详细研究了Ni-Mn-Ga/Cu的磁学性质,发现其磁热效应优于热压烧结及微米/纳米化的对应材料体系.同时,该磁热复合材料具有11.2 W m^(-1)K^(-1)的优良热导率.本文使用Hasselman–Johnson模型并对其进行优化,探究了热导率与复合材料微观组织的关系.与电弧炉熔炼样品相比,不同SPS烧结温度制备的磁热复合材料的力学水平得到提高,其最小断裂应力和断裂应变分别为340 MPa和4%.此外,利用基于拓展线性Drucker–Prager模型的有限元模拟方法,阐明了Ni-Mn-Ga/Cu磁热复合材料的失效机制.以上实验和模拟结果丰富了磁热材料领域的相关知识,并促进了磁制冷技术面向实际应用的进一步发展.Magnetic refrigeration technology based on the magnetocaloric effect can better meet the requirements of efficient energy consumption and conversion.From engineering perspective,preparing magnetocaloric composites is an effective and efficient approach to combine desirable magnetocaloric performance,large thermal conductivity and ameliorated mechanical properties.In the present work,Ni-Mn-Ga/Cu magnetocaloric composites were prepared by spark plasma sintering(SPS)and compared with their counterparts fabricated via conventional methods.Magnetic properties were studied in detail and the magnetocaloric effect of Ni-Mn-Ga/Cu composites was characterized to be better than that of their hot-pressed counterparts and that of many micro/nanosized Ni-Mn-Ga alloys.Besides,the composites exhibited favorable thermal conductivity of 11.2W m^(−1) K^(−1).The Hasselman–Johnson model was adopted and modified to relate the thermal conductivity to the microstructure of the composites.Compared with arc-melted alloys,these SPS magnetocaloric composites sintered at different temperatures exhibited largely enhanced mechanical performance with minimum fracture stress of 340 MPa and strain of 4%.Furthermore,the failure mechanism of Ni-Mn-Ga/Cu magnetocaloric composite was elucidated by finite element simulation based on an extended linear Drucker–Prager model.The above findings from both experiments and simulation advance the knowledge of magnetocaloric materials and promote the development of magnetic refrigeration technology towards practical applications.
关 键 词:电弧炉熔炼 断裂应变 失效机制 Johnson模型 磁制冷技术 断裂应力 磁热效应 等离子烧结
分 类 号:TB331[一般工业技术—材料科学与工程] TB64
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...