基于高斯滤波和AKAZE-LATCH的图像匹配算法  被引量:6

Image Matching Algorithm Based on Gaussian Filtering and AKAZE-LATCH

在线阅读下载全文

作  者:谷学静 杨宝上 刘秋月 GU Xuejing;YANG Baoshang;LIU Qiuyue(College of Electrical Engineering,North China University of Science and Technology,Tangshan 063210,CHN;College of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210,CHN;Tangshan Digital Media Engineering Technology Research Center,Tangshan 063000,CHN)

机构地区:[1]华北理工大学电气工程学院,河北唐山063210 [2]华北理工大学人工智能学院,河北唐山063210 [3]唐山市数字媒体工程技术研究中心,河北唐山063000

出  处:《半导体光电》2023年第4期639-644,共6页Semiconductor Optoelectronics

基  金:唐山市沉浸式虚拟环境三维仿真基础创新团队项目(18130221A)。

摘  要:针对图像匹配中AKAZE(Accelerated-KAZE)算法匹配精度较低以及计算复杂等问题,提出了一种基于高斯滤波和AKAZE-LATCH(AKAZE-Learned Arrangements of Three Patch Codes)算法相融合的图像匹配算法。首先,对输入图像进行高斯滤波预处理,去除高斯噪声等连续性噪声,并且保留图像的边缘信息。然后通过LATCH算法为AKAZE算法构建高效的二进制描述子,再通过KNN(K Nearest Neighbors)算法得到对应的匹配对。最后结合USAC(Universal RANSAC)去除误匹配对方法进行再次筛选,得到最终的匹配结果。经实验对比,所设计的算法相较于AKAZE算法匹配精度更高,且具有良好的鲁棒性和可靠性,可用于多数复杂场景下的图像匹配。To address the problems of low accuracy and complex computation of AKAZE(accelerated-KAZE)algorithm in image matching,an image matching algorithm based on the combination of Gaussian filtering and AKAZE-LATCH(AKAZE-Learned Arrangements of Three Patch Codes)algorithm is proposed.Firstly,the input image was preprocessed by Gaussian filtering to remove continuous noise such as Gaussian noise,and retain the edge information of the image.Then,efficient binary descriptors were constructed for AKAZE using LATCH algorithm,and corresponding matching pairs were obtained using KNN(K Nearest Neighbors)algorithm.Finally,the method was screened again with USAC(Universal RANSAC)to remove false matches,and the final matching result was obtained.Experimental comparison shows that compared with AKAZE algorithm,the proposed algorithm has higher matching accuracy,good robustness and reliability,and can be used for image matching in most complex scenes.

关 键 词:图像匹配 高斯滤波 LATCH算法 KNN算法 USAC 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象