回归量刑基准:区域性常态不法的常态量刑——以司法大数据辅助量刑为背景  被引量:3

Returning to Sentencing Benchmarks:Normal Sentencing for Regional Normal Offences--Judicial Big Data-assisted Sentencing as a Context

在线阅读下载全文

作  者:甄航 Zhen Hang

机构地区:[1]西南政法大学法学院,重庆401120

出  处:《新疆社会科学》2023年第5期127-136,175,176,共12页Social Sciences in Xinjiang

基  金:中国博士后科学基金第71批面上资助(2022M712650);重庆市教育委员会人文社会科学研究项目“智慧量刑的实践困境与理论破解研究”(22SKGH028)的阶段性成果。

摘  要:量刑基准的确立要在明确其宏观定位的基础上进行微观构造的探索。在宏观定位层面,量刑基准是责任刑之基准,其体现着消极责任主义原则对量刑活动的制约。在微观构造层面,量刑基准的确立分为确立根据和确立算法,前者明确何种情节影响着量刑基准的确立,后者探究从个案事实(存在)到量刑基准刑罚量(应当)之危险跳跃的具体算法。量刑基准的确立根据是排除预防刑情节的区域性常态不法事实;量刑基准的确立算法是区域性常态不法的常态量刑(量刑众数),而非传统的量刑基准实证研究中容易受极端值影响且无法解决不同刑种之间量纲化问题的裸刑均值。The establishment of sentencing benchmarks should be explored as a micro-construction based on a clear understanding of their macro-positioning.At the macro-positioning level,sentencing benchmarks are benchmarks for liability sentences,which reflect the constraints imposed on sentencing activities by the principle of passive liability.At the micro-constructive level,the establishment of a sentencing benchmark is divided into a basis for establishing it,which identifies what circumstances affect the establishment of the benchmark,and an algorithm that explores the specific algorithm for the dangerous jump from the facts of the individual case(existence)to the amount of the penalty of the benchmark(should).The sentencing benchmarks are established based on regional normal offences that exclude preventive sentencing circumstances.The algorithm for the sentencing benchmark is the normal sentencing for regional normal wrongdoing(the mode for sentences),rather than the bare sentencing mean,which is susceptible to extremes and fails to address the problem of dimension between different types of sentencing in traditional empirical studies of sentencing benchmarks.

关 键 词:量刑基准 量刑规范化 量刑起点 基准刑 

分 类 号:D914[政治法律—刑法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象