不锈钢极薄带在拉伸弯曲中曲率的精细化计算  

Refinement of curvature calculation of stainless steel ultra-thin strip in tensile bending

在线阅读下载全文

作  者:赵剑 周存龙[1] 魏东 王天翔 廖席 赵永顺 ZHAO Jian;ZHOU Cun-long;WEI Dong;WANG Tian-xiang;LIAO Xi;ZHAO Yong-shun(College of Mechanical and Engineering,Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;Shanxi TISCO Stainless Steel Precision Strip Co.,Ltd.,Taiyuan 030024,China)

机构地区:[1]太原科技大学,山西省冶金设备设计理论与技术重点实验室,机械工程学院,山西太原030024 [2]山西太钢不锈钢精密带钢有限公司,山西太原030024

出  处:《塑性工程学报》2023年第10期160-166,共7页Journal of Plasticity Engineering

基  金:山西省科技重大专项(20181102015);2021年度太原市科技计划“揭榜挂帅项目”;2020年太原市重大科技计划项目。

摘  要:针对在由力学挠曲特性推导的拉弯矫直弯曲曲率公式中存在理论计算值与实验测量值误差较大的问题,将弯曲单元中的带材曲线假设为抛物线,推导出带材张力切向角度与张力和矫直辊压弯量之间关系的计算公式,对原曲率计算方法进行了优化。并以304不锈钢为研究对象进行了弯曲曲率测试实验,通过对带材下表面的弯曲曲线进行多项式拟合,分析出弯曲曲率实验值,并与理论计算值对比分析。结果表明,原公式计算结果与实验值误差在2.1%~127.0%,优化公式计算结果与实验值误差在2.3%~21.6%,优化曲率计算结果的最大误差比原公式计算结果最大误差小105.4%,说明该公式计算的弯曲曲率与实际拉伸弯曲更吻合。In view of the problem of large error between theoretical calculation values and experimental measurement values in the formula of tensile bending straightening curvature derived from mechanical flexural characteristics,the strip curve in the bending unit was assumed to be a parabola,and the calculation formula of the relationship between the tension tangential angle of the strip,tension and the amount of compression bending of straightening roll was derived.The original curvature calculation method was optimized.Taking 304 stainless steel as the research object,the bending curvature measurement experiments were conducted.Through polynomial fitting of the bending curves of the lower surface of the strip,the experimental bending curvature values were analyzed and compared with the theoretical calculation values.The results show that the error between the original formula calculation results and the experimental values is 2.1%-127.0%,and the error between the optimized formula calculation results and the experimental values is between 2.3%-21.6%,and the maximum error of the optimized curvature calculation results is 105.4%less than that of original formula calculation results,indicating that the bending curvature calculated by the formula is more consistent with the actual tensile bending.

关 键 词:拉弯矫直 张力 压弯量 最大弯曲曲率 

分 类 号:TG142.7[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象