检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪麟 陈然 鲍佩 方玉[1] 王凯[1] 许邦龙[1] 胡广全[1] WANG Lin;CHEN Ran;BAO Pei;FANG Yu;WANG Kai;XU Banglong;HU Guangquan(Department of Cardiology,the Second Affiliated Hospital of Anhui Medical University,Hefei 230601,China)
机构地区:[1]安徽医科大学第二附属医院心血管内科,安徽合肥230601
出 处:《中国介入影像与治疗学》2023年第10期610-614,共5页Chinese Journal of Interventional Imaging and Therapy
摘 要:目的建立临床-影像学模型,观察其预测冠状动脉狭窄患者基于冠状动脉CT造影所获无创血流储备分数(CT-FFR)≤0.8的效能。方法回顾性分析114例接受冠状动脉CT造影(CCTA)并获取CT-FFR的冠状动脉狭窄患者,将其分为缺血组(CT-FFR≤0.8,n=69)和非缺血组(CT-FFR>0.8,n=45);以单因素及多因素logistic回归分析筛选CT-FFR≤0.8的独立影响因素,构建临床-影像学模型,评价其预测CT-FFR≤0.8的效能。结果单因素及多因素logistic回归分析结果显示,典型心绞痛、重度狭窄、管状病变及弥漫性病变为冠状动脉狭窄患者CT-FFR≤0.8的独立影响因素;基于上述因素建立的临床-影像学模型的数据拟合(P=0.45)及泛化能力(Kappa=0.46)均可,预测概率接近实际概率线及理想线,其预测冠状动脉狭窄患者CT-FFR≤0.8的曲线下面积为0.86[95%CI(0.79,0.93)],敏感度为78.34%,特异度为82.22%。结论基于心绞痛类型、狭窄程度和病变类型的临床-影像学模型预测冠状动脉狭窄患者CT-FFR≤0.8的效能较佳。Objective To evaluate the efficiency of the established clinical-imaging model for predicting coronary artery stenosis patients with fractional flow reserve derived from coronary CT angiography(CT-FFR)≤0.8.Methods Data of 114 patients with coronary artery stenosis who underwent coronary CT angiography(CCTA)and CT-FFR analysis were retrospectively reviewed.The patients were divided into ischemic group(CT-FFR≤0.8,n=69)or non-ischemic group(CT-FFR>0.8,n=45).Univariate and multivariate logistic regression analysis were performed to screen independent impact factors of CT-FFR≤0.8.Then the clinical-imaging model was established,and its efficacy for predicting CT-FFR≤0.8 was evaluated.Results Univariate and multivariate logistic regression analysis showed that typical angina,severe stenosis of coronary artery,tubular and diffuse lesions were all independent impact factors of CT-FFR≤0.8 in patients with coronary artery stenosis.The data fitting(P=0.45)and generalization ability(Kappa=0.46)of the model established based on the above factors were both good,with predicted probabilities closed to the actual probability line and ideal line.The area under the curve of this model for predicting CT-FFR≤0.8 in patients with coronary artery stenosis was 0.86(95%CI[0.79,0.93]),with sensitivity of 78.34%and specificity of 82.22%.Conclusion The clinical-imaging model established based on the type of angina pectoris,degree of stenosis and type of lesion was effective for predicting CT-FFR≤0.8 in coronary artery stenosis patients.
关 键 词:冠心病 血流储备分数 心肌的 体层摄影术 X线计算机 血管造影术
分 类 号:R541.4[医药卫生—心血管疾病] R814.42[医药卫生—内科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222