基于长短期记忆网络的大型漂浮式风力发电机平台运动极短期预报方法  被引量:1

Ultra-Short-Term Platform Motion Prediction Method of Large Floating Wind Turbines Based on LSTM Network

在线阅读下载全文

作  者:卫慧 陈鹏 张芮菡[2] 程正顺 WEI Hui;CHEN Peng;ZHANG Ruihan;CHENG Zhengshun(Shanghai Investigation,Design and Research Institute Co.,Ltd.,Shanghai 200335,China;State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Sanya Yazhou Bay Institute of Deepsea Science and Technology,Shanghai Jiao Tong University,Sanya 570025,Hainan,China)

机构地区:[1]上海勘测设计研究院有限公司,上海200335 [2]上海交通大学海洋工程国家重点实验室,上海200240 [3]上海交通大学三亚崖州湾深海科技研究院,海南三亚570025

出  处:《上海交通大学学报》2023年第S01期37-45,共9页Journal of Shanghai Jiaotong University

基  金:国家自然科学基金(42176210,52201330)资助项目。

摘  要:大型漂浮式风力发电机平台运动响应的超前预报是实现主动调载系统控制和智慧运维监测的关键技术.然而,漂浮式风力发电机复杂的工作环境使得仅依靠物理模型和数值仿真方法的极短期预报具有非常大的挑战.因此,提出一种创新的基于长短期记忆神经网络的漂浮式风力发电机平台运动极短期预报方法,并利用实测数据开展了浮式平台纵荡运动的验证与不确定性分析.结果表明,该极短期预报方法可以获得较好的精度,超前60 s预报工作状态下纵荡运动的均方误差最大仅约为1%.该大型漂浮式风力发电机极短期运动响应预报能够为未来漂浮式风电场的智慧运维提供扎实的技术支撑.The motion prediction of large floating wind turbine platforms is the key technology to realize the control of active ballast systems and intelligent operation and maintenance monitoring.However,the complex environment of floating wind turbines makes ultra-short-term predictions that only rely on physical models and numerical simulation methods very challenging.Therefore,this paper proposes an innovative ultra-short-term prediction method for floating wind turbine platform motion based on the long-short-term memory(LSTM)neural network.Measured data have been used to verify the feasibility and uncertainty of this method in terms of surge motion.The results show that the ultra-short-term prediction method proposed in this paper can obtain a better accuracy.For example,the maximum mean square error of surge motion prediction in the 60 s under working condition is only about 1%.The ultra-short-term motion prediction of large floating wind turbines proposed in this paper provides solid technical support for future intelligent operation and maintenance of floating wind farms.

关 键 词:大型漂浮式风力发电机 极短期预报 长短期记忆网络 不确定性 

分 类 号:TP319[自动化与计算机技术—计算机软件与理论] TK89[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象