检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:项颂 苏鹏 吴晓丹 王杨 蒋小龙 XIANG Song;SU Peng;WU Xiaodan;WANG Yang;JIANG Xiaolong(State Grid Inner Mongolia Eastern Electric Power Co.,Ltd.,Hohhot 010010,China;College of Electrical Engineering,Sichuan University,Chengdu 610065,China)
机构地区:[1]国网内蒙古东部电力有限公司,内蒙古呼和浩特010010 [2]四川大学电气工程学院,四川成都610065
出 处:《电工电能新技术》2023年第10期95-104,共10页Advanced Technology of Electrical Engineering and Energy
基 金:国家电网科技项目(52660021000P);国家自然科学基金项目(51907133)。
摘 要:近年来,随着可再生能源的大力发展,电力电子设备的渗透率越来越高,电力系统的振荡特性逐渐呈现出宽频化特征,而现有的广域监测系统(WAMS)面向工频分量,难以满足宽频振荡监测、控制、保护的需求。为此,本文提出了一种基于径向基(RBF)神经网络和泰勒傅里叶变换(TFT)的宽频振荡监测方法,实现了宽频振荡信号的精确估计。首先,利用离散傅里叶变换(DFT)进行初步估计,然后采用TFT精确计算宽频振荡信号的参数。为降低TFT算法的计算量,本文将RBF神经网络用于噪声强度估计,根据噪声大小自适应确定数据窗长。最后,对大量仿真数据及河北沽源和新疆哈密的实测振荡数据进行了验证,结果表明即使在噪声较大时,RBF神经网络的拟合效果也十分出色,文中方法的精确性仍然较高,因此,有望在未来应用于工程实际中。With the development of renewable resources in recent years,the penetration rate of electronic equipment is getting higher and the oscillation is taking on characteristic of broadband.However,the existing wide-area measurement system(WAMS)mainly focuses on fundamental component,which is difficult to satisfy the demands of monitoring,control,protection of broadband oscillation.In this paper,a method based on radical basis function(RBF)neural network and Taylor-Fourier transform(TFT)of broadband oscillation monitoring was proposed,which realized the accurate estimation of broadband oscillation.Firstly,the discrete Fourier transform(DFT)was used to get a preliminary estimation,and then TFT was used to get accurate estimation of signal.In order to reduce the computation of TFT method,RBF neural network was used for noise intensity estimation,which determined the window length of data adaptively.Finally,the proposed method was verified through a large number of simulation data and filed data of Guyuan,Hebei and Hami,Xinjiang.And experiment results manifest that RBF neural network has extraordinary de-noising effect and the proposed method shows high accuracy,even under low signal-noise ratio(SNR).Hence,it is expected to be applied in real engineering.
关 键 词:宽频振荡 新能源 广域测量系统 振荡参数辨识 傅里叶变换 RBF
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171