检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Liang Yun CHEN Tian Qi FENG Yao MA Ripan SAHA Hong Yi ZHANG
机构地区:[1]School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,P.R.China [2]Department of Mathematics,Raiganj University,Raiganj 733134,West Bengal,India [3]School of Mathematical Sciences,Nankai University,Tianjin 300071,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2023年第10期1887-1906,共20页数学学报(英文版)
基 金:Supported by NSF of Jilin Province(Grant No.YDZJ202201ZYTS589);NNSF of China(Grant Nos.12271085,12071405);the Fundamental Research Funds for the Central Universities。
摘 要:A Hom-group is the non-associative generalization of a group whose associativity and unitality are twisted by a compatible bijective map.In this paper,we give some new examples of Hom-groups,and show the first,second and third isomorphism theorems of Hom-groups.We also introduce the notion of Hom-group action,and as an application,we prove the first Sylow theorem for Hom-groups along the line of group actions.
关 键 词:Hom-groups Hom-subgroups Hom-quotient groups ISOMORPHISM Hom-group actions first Sylow theorem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.116.193