G3-PLC系统压缩感知信道估计的LS-SAMP算法  被引量:3

LS-SAMP Algorithm for Compressed Sensing Channel Estimation in G3-PLC System

在线阅读下载全文

作  者:凌锦炜 张峰[1] 沈波[2] 赵黎[1] LING Jinwei;ZHANG Feng;SHEN Bo;ZHAO Li(School of Electronic Information Engineering,Xi an University of Technology,Xi an 710021,China;Xi an Institute of Mechanical and Information Technology,Xi an 710065,China)

机构地区:[1]西安工业大学电子信息工程学院,西安710021 [2]西安机电信息技术研究所,西安710065

出  处:《电讯技术》2023年第10期1618-1624,共7页Telecommunication Engineering

基  金:国家自然科学基金资助项目(12004292);陕西省科技厅一般项目-工业领域(2020GY-054);西安市科技计划项目(2020KJRC0040)。

摘  要:为了提高G3-PLC系统可靠性,引入压缩感知(Compressed Sensing,CS)的信道估计方法,提出了一种基于最小二乘(Least Squares,LS)的稀疏度预测自适应匹配追踪(LS Based Prediction-Sparsity Adaptive Matching Pursuit,LS-SAMP)算法。该算法在稀疏度自适应匹配追踪(Sparsity Adaptive Matching Pursuit,SAMP)算法的基础上,采用了基于LS的稀疏度预测方法对信道稀疏度进行预估计,使算法可以快速逼近信道的真实稀疏度,提高算法运行效率;其次利用主成分分析方法对观测矩阵进行线性优化,降低观测矩阵相干度,提高算法的重构性能。实验结果表明,在误码率为10-3时,所提算法相对于LS算法的信道估计性能有1 dB的提升,且其运行效率比SAMP算法提升了31.23%,以更有效的方式提高了G3-PLC系统的可靠性。In order to improve the reliability of G3-PLC system,the channel estimation method of compressed sensing(CS)is introduced,and a Least Squares(LS)based prediction-Sparsity Adaptive Matching Pursuit(LS-SAMP)algorithm is proposed.Based on the Sparsity Adaptive Matching Pursuit(SAMP)algorithm,the LS-SAMP algorithm uses the sparsity prediction method based on LS to predict the channel sparsity,so that it can quickly approach the real sparsity of the channel and improve the operation efficiency of the algorithm.Secondly,the principal component analysis method is used to linearly optimize the observation matrix,reduce the coherence of the observation matrix and improve the reconstruction performance of the algorithm.The experimental results show that when the bit error rate is 10-3,the channel estimation performance of the proposed algorithm is 1 dB higher than that of LS algorithm,and the operation efficiency is 31.23% higher than that of SAMP algorithm,which improves the reliability of G3-PLC system in a more effective way.

关 键 词:G3-PLC系统 信道估计 压缩感知 稀疏度自适应匹配追踪(SAMP) 

分 类 号:TN911.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象