基于级联视觉Transformer与多尺度特征融合的燃烧场温度层析成像  被引量:2

Temperature Tomography for Combustion Field Based on Hierarchical Vision Transformer and Multi-scale Features Merging

在线阅读下载全文

作  者:司菁菁[1,4] 王晓莉 程银波 刘畅 SI Jingjing;WANG Xiaoli;CHENG Yinbo;LIU Chang(School of Information Science and Engineering,Yanshan University,Qinhuangdao 066004,China;Ocean College,Hebei Agricultural University,Qinhuangdao 066003,China;School of Engineering,The University of Edinburgh,Edinburgh EH93JL,UK;Hebei Key Laboratory of Information Transmission and Signal Processing,Qinhuangdao 066004,China)

机构地区:[1]燕山大学信息科学与工程学院,秦皇岛066004 [2]河北农业大学海洋学院,秦皇岛066003 [3]爱丁堡大学工程学院,爱丁堡EH93JL [4]河北省信息传输与信号处理重点实验室,秦皇岛066004

出  处:《电子与信息学报》2023年第10期3511-3519,共9页Journal of Electronics & Information Technology

基  金:河北省自然科学基金(F2021203027);燕山大学基础创新科研培育项目(2021LGZD011);河北省重点实验室项目(202250701010046)。

摘  要:可调谐二极管激光吸收光谱层析成像(TDLAT)是一种重要的光学非侵入式燃烧诊断技术,可实现燃烧场2维横截面气体温度和浓度等流场参数分布的重建。该文将视觉Transformer(ViT)与多尺度特征融合引入TDLAT领域,研究有限数量测量数据与整个测量空间温度分布的非线性映射,提出基于级联ViT与多尺度特征融合的燃烧场温度层析成像网络(HVTMFnet)。该网络提取并融合TDLAT测量数据的局部-全局相关特征,实现整个测量空间的层次化温度分布重建。仿真实验与实际TDLAT系统实验均表明,HVTMFnet重建图像的质量优于现有的基于卷积神经网络(CNN)和基于残差网络的温度层析成像方案。与基于CNN的温度层析成像方案相比,HVTMFnet的重建误差能够降低49.2%~72.1%。Tunable Diode Laser Absorption Tomography(TDLAT)is an important non-intrusive combustion diagnostic technology,which can be used to reconstruct two-dimensional cross-sectional distributions of flow-field parameters such as gas temperature and concentration in the combustion field.In this paper,Vision Transformer(ViT)and multi-scale features merging are introduced into TDLAT to study the nonlinear mapping between a limited number of measurement data and the temperature distribution in the entire tomographic filed.Temperature tomography network(HVTMFnet)is proposed based on the hierarchical Vision Transformer(ViT)and Multi-scale Features merging.By extracting and merging the local and global correlation characteristics of TDLAT measurement data,HVTMFnet reconstructs the hierarchical temperature distribution in the entire tomographic field.Both simulations and lab-scale experiments with TDLAT system show that HVTMFnet retrieves better-quality temperature images than existing temperature tomography schemes based on Convolutional Neural Network(CNN)and residual network.In comparison to the temperature tomography scheme based on CNN,HVTMFnet reduces the reconstruction error by 49.2%~72.1%.

关 键 词:可调谐二极管激光吸收光谱 层析成像 温度重建 视觉Transformer 

分 类 号:TN919.8[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象