检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石晓荣[1] 张康[1] 倪亮[1] 刘泽文[1] 姜丰 陈鑫 Shi Xiaorong;Zhang Kang;Ni Liang;Liu Zewen;Jiang Feng;Chen Xin(Beijing Institute of Control and Electronics Technology,Beijing 100038,China)
出 处:《航天控制》2023年第4期20-26,共7页Aerospace Control
摘 要:针对复杂电磁环境下,传统基于雷达回波的目标识别方法定位精度差和识别能力不足的问题,以典型海背景环境下的雷达时频二维像目标为研究对象,提出了复杂环境下少样本域自适应雷达智能RD识别技术,通过设计基于分离注意力的偏移区间配准目标识别算法架构,实现了对目标的精确定位和识别,同时设计了域自适应技术对源域和目标域进行特征配准,解决少样本条件下算法场景适应性不足的问题。通过在雷达回波仿真数据和真实数据上对算法测试验证,取得了较优的结果,证明了该算法的有效性。Aiming at the low detection accuracy and weak recognition ability of traditional radar object detection and recognition in the wild,the radar echo is token in the typical ocean environment as the research object in this paper,and a domain adaptive radar RD intelligent recognition technology with tiny data is proposed in complex environments.A two-stage detector is proposed,which is able to acquire perfect performance through this research simulation,and the domain adaptive algorithm designed for the source domain and the target domain can provide solution of lacking generalization adaptability under tiny quantity data.The model shows a good performance result during training and testing by the simulation data and the real data,which demonstrats the validation and capability.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.170.67