The tensor embedding for a Grothendieck cosmos  

在线阅读下载全文

作  者:Henrik Holm Sinem Odabasi 

机构地区:[1]Department of Mathematical Sciences,University of Copenhagen,Copenhagen 02100,Denmark [2]Instituto de Ciencias Físicas y Matemáticas,Universidad Austral de Chile,Valdivia 5090000,Chile

出  处:《Science China Mathematics》2023年第11期2471-2494,共24页中国科学:数学(英文版)

基  金:supported by CONICYT/FONDECYT/INICIACIOóN(Grant No.11170394)。

摘  要:While the Yoneda embedding and its generalizations have been studied extensively in the literature,the so-called tensor embedding has only received a little attention.In this paper,we study the tensor embedding for closed symmetric monoidal categories and show how it is connected to the notion of geometrically purity,which has recently been investigated in the works of Enochs et al.(2016)and Estrada et al.(2017).More precisely,for a Grothendieck cosmos,i.e.,a bicomplete Grothendieck category V with a closed symmetric monoidal structure,we prove that the geometrically pure exact category(V,ε■)has enough relative injectives;in fact,every object has a geometrically pure injective envelope.We also show that for some regular cardinalλ,the tensor embedding yields an exact equivalence between(V,ε■)and the category ofλ-cocontinuous V-functors from Presλ(V)to V,where the former is the full V-subcategory ofλ-presentable objects in V.In many cases of interest,λcan be chosen to be■0 and the tensor embedding identifies the geometrically pure injective objects in V with the(categorically)injective objects in the abelian category of V-functors from fp(V)to V.As we explain,the developed theory applies,e.g.,to the category Ch(R)of chain complexes of modules over a commutative ring R and to the category Qcoh(X)of quasi-coherent sheaves over a(suitably nice)scheme X.

关 键 词:enriched functor exact category (pre)envelope (pure)injective object purity symmetric monoidal category tensor embedding Yoneda embedding 

分 类 号:O183.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象