检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李祥秀[1] 宋笑彦 李小军[1,2] 李易[2] 刘爱文[1] LI Xiangxiu;SONG Xiaoyan;LI Xiaojun;LI Yi;LIU Aiwen(Institute of Geophysics,China Earthquake Administration,Beijing 100081,China;Faculty of Architecture,Civil and Transportation Engineering,Beijing University of Technology,Beijing 100124,China)
机构地区:[1]中国地震局地球物理研究所,北京100081 [2]北京工业大学城市建设学部,北京100124
出 处:《振动与冲击》2023年第20期40-47,68,共9页Journal of Vibration and Shock
基 金:国家重点研发计划(2022YFC3003505,2019YFC1511003);中国地震局地球物理研究所基本科研业务费专项(DQJB21B37)。
摘 要:建立了巨-子结构隔震体系的三维有限元模型,基于地震动峰值加速度对20条实际地震动记录进行调幅,在此基础上对考虑不同锈蚀状态下的巨-子结构隔震体系进行增量动力时程分析,得到了240组地震响应样本,探讨了钢材锈蚀对巨-子结构隔震体系抗震性能的影响。利用机器学习的方法将结构信息、地震动信息与结构的损伤等级相关联,给出了6种机器学习算法对巨-子结构隔震体系损伤等级的预测结果:极端梯度提升树、梯度提升树、随机森林、决策树的总体预测准确率均达到80%以上,其中极端梯度提升树算法表现最佳,准确率为86.6%且对不同损伤状态的预测精度也较高,支持向量机算法的总体预测准确率最低为60.3%。The finite element model of the mega-sub isolation system was established in this paper.Incremental dynamic time history analyses of the mega-sub isolation system considering different corrosion states was carried out by inputting 20 actual ground motion records with amplitude modulation on the peak ground acceleration(PGA).240 sets of seismic responses samples were obtained,and the effect of steel corrosion on the seismic performance of the mega-sub isolation system was discussed.Using machine learning method to correlate structural information,ground motion information,and structural damage level,the prediction results of six machine learning algorithms on the damage level of the mega-sub isolation system were given.The overall prediction accuracy of extreme gradient boosting tree,gradient boosting tree,random forest,and decision tree reached more than 80%.The extreme gradient boosting tree algorithm performed the best,with an accuracy rate of 86.6%and a higher prediction accuracy for different damage states.The prediction accuracy of the support vector machine algorithm was the lowest,with an accuracy rate of 60.3%.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7